Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T01:49:50.749Z Has data issue: false hasContentIssue false

Thermal Stability Studies of Diamond-Like Carbon Films

Published online by Cambridge University Press:  22 February 2011

John E. Parmeter
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
David R. Tallant
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Michael P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Thin films of amorphous carbon/hydrogen, also known as diamond-like carbon or DLC, are of interest as an economical alternative to diamond in a variety of coatings applications. We have investigated the thermal stability of DLC films deposited onto tungsten and aluminum substrates via plasma CVD of methane. These films contain approximately 40 atom % hydrogen, and based on Auger spectra the carbon in the films is estimated to be approximately 60 % sp3 hybridized and 40 % sp2 hybridized. Thermal desorption, Auger, and Raman measurements all indicate that the DLC films are stable to 250–300° C. Between 300 and 500° C, thermal evolution of hydrogen from the films is accompanied by the conversion of carbon from sp3 to sp2 hybridization, and Raman spectra indicate the conversion of the overall film structure from DLC to micro-crystalline graphite or so-called “glassy” carbon. These results suggest that DLC of this type is potentially useful for applications in which the temperature does not exceed 250° C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kaplan, S., Jansen, F., and Machonkin, M., Appl. Phys. Lett. 47, 750 (1985).Google Scholar
[2] Hsu, W., Foltz, G. W., Greulich, F. A., McCarty, K. F., Thomas, G. J., Green, P. F., and Doyle, B.L., Mat. Res. Soc. Symp. Proc. Vol. 98, 155 (1987).Google Scholar
[3] Winter, J., Esser, H. G., Wienhold, P., Phillips, V., Vietzke, E., Besocke, K. H., Moeller, W., and Emmoth, B., Nuclear Instr. and Methods in Physics Research B 23, 538 (1987).Google Scholar
[4] Fink, J., Mueller-Heinzerling, T., Pflueger, J., Bubenzer, A., Koidl, P., and Crecelius, G., Solid State Comm. 47, 687 (1983).Google Scholar
[5] Green, A. K. and Rehn, V., J. Vac. Sci. Technol. A 1, 1877 (1983).Google Scholar
[6] Dischler, B., Bubenzer, A., and Koidl, P., Solid State Comm. 48, 105 (1983).Google Scholar
[7] Nyaiesh, A. R. and Nowak, W. B., J. Vac. Sci. Technol. A 1, 308 (1983).Google Scholar
[8] Winter, J., J. of Nuclear Mat. 145–147, 131 (1987).Google Scholar
[9] Cho, N. H., Veirs, D. K., Ager, J. W. III, Rubin, D., Hopper, C. B., and Bogy, D. B., J. Appl. Phys. 71, 2243 (1992).Google Scholar
[10] Causey, R. A., Wampler, W. R., and Walsh, D., J. of Nuclear Mat. 176–177, 987 (1993).Google Scholar
[11] Craig, S. and Harding, G. L., Thin Solid Films 97, 345 (1982).Google Scholar
[12] Nadler, M. P., Donovan, T. M., and Green, A. K., Appl. Surface Sci. 18, 10 (1984).Google Scholar
[13] Parmeter, J. E., J. Phys. Chem. 97, 11530 (1993).Google Scholar
[14] Tallant, D. R., Parmeter, J. E., Siegal, M. P., and Simpson, R. L., submitted to Diamond and Related Materials.Google Scholar
[15] Mizokawa, Y., Miyasato, T., Nakamura, S., Geib, K. M., and Wilmsen, C. W., Surface Sci. 182, 431 (1987).Google Scholar
[16] Lurie, P. G. and Wilson, J. M., Surface Sci. 65, 476 (1977).Google Scholar