Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T20:16:22.563Z Has data issue: false hasContentIssue false

Thermal Stability of SiHn Configurations in Fz Silicon Single Crystals

Published online by Cambridge University Press:  03 September 2012

Masami Kouketsu
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
Seiichi Isomae
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
Get access

Abstract

Thermal stability of SiHn (n=1∼4) configurations in FZ silicon crystals grown in Ar/H2 has been investigated by means of infrared absorption spectroscopy. Infrared absorption peaks at 2210, 2192, 2123 and 1946 cm−1, which are due to SiH4, SiH3, SiH2 and SiH units in silicon lattice, has been observed. It is found that the concentration of SiH4 and SiH increase with the decrease in SiH2 and SiH3 concentration at 500°C, and vice versa at 600°C. Annealing results suggest thermally induced structural transformations of SiHn configurations. We propose a model of the transformations through the cleavage of adjacent Si-H bonds to form a Si-Si bond and a H2 molecule, as well as the reaction of a H2 molecule with a Si-Si bond.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pearton, S. J., Corbett, J. W., and Shi, T. S., Appl. Phys. A, 43, 153 (1987).Google Scholar
[2] Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Appl. Phys. Lett. 56, 882 (1982).Google Scholar
[3] Pankov, J. I., Wance, R. O., and Berkeyheiser, J. E., Appl. Phys. Lett. 45, 1100 (1984).CrossRefGoogle Scholar
[4] Thewalt, M. L. W. and Lightowlers, E.C., Appl. Phys. Lett. 46, 689 (1985).Google Scholar
[5] Stavola, M., Pearton, S. J., Lopata, J., and Dautremont-Smith, W. C., Phys. Rev. B, 37, 8313 (1988).Google Scholar
[6] Johnson, N. M., Herring, C., and Chadi, D. J., Phys. Rev. Lett. 56, 769 (1986).Google Scholar
[7] Benton, J. L., Doherty, C. J., Ferris, S. D., Flamm, D. L., Kimerling, L. C., and Leamy, H. J., Appl. Phys. Lett. 3. 6, 670 (1980).Google Scholar
[8] Pearton, S. J. and Tavendale, A. J., Phys. Rev. B, 26, 7105 (1982).Google Scholar
[9] Van de Walle, C. G., in Hydrogen in Semiconductors, edited by Pankove, J.I. and Johnson, N.M., 34, (Academic, Boston, 1991), p. 585.Google Scholar
[10] Tarnow, E. and Street, R. A., Phys. Rev. B, 45, 3366 (1992).Google Scholar
[11] Cui, S., Mai, Z., and Qian, L., Scientia Sinica (A), 22, 213 (1984).Google Scholar
[12] Bai, G. R., Qi, M. W., Xie, L. M., and Shi, T. S., Solid State Communi. 56, 277 (1985).Google Scholar
[13] Shi, T. S., Xie, L. M., Bai, G. R., and Qi, M. W., Phys. Stat. Sol. (b), 131. 511 (1985).Google Scholar
[14] Fang, C. J., Gruntz, K. J., Ley, L. and Cardona, M., J Non-Cryst. Solids, 35–35, 787 (1980).Google Scholar
[15] Shi, T. S., Sahu, S. N., Oehrlein, G. S., Hiraki, A., and Corbett, J. W., Phys. Stat. Sol. (a), 74, 329 (1982).Google Scholar
[16] Lucovsky, G., Solid State Communi. 29, 571 (1978).Google Scholar
[17] Qi, M. W., Bai, G. R., Shi, T. S., Xie, L. M., Mater. Lett. 2, 467 (1985).Google Scholar
[18] Kittel, C., Solid State Physics, 5th ed. (John Wiley & Sons, New York, 1976), p. 543.Google Scholar
[19] Shi, T. S., Sahu, S. N., Corbett, J. W. and Snyder, L. C., Scientica Solidi, 81b, 637 (1977).Google Scholar