Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-19T06:10:35.299Z Has data issue: false hasContentIssue false

Thermal Properties of Mineralized and Non Mineralized Type I Collagen in Bone

Published online by Cambridge University Press:  01 February 2011

L. F. Lozano
Affiliation:
Instituto de Física, UNAM, Ciudad Universitaria, Coyoacan. C.P. 01000, Mexico. D.F.
M. A. Peña-Rico
Affiliation:
Instituto de Física, UNAM, Ciudad Universitaria, Coyoacan. C.P. 01000, Mexico. D.F.
H. Jang-Cho
Affiliation:
Instituto de Investigaciones Antropologicas, UNAM, Ciudad Universitaria, Coyoacan. C.P. 04510. Mexico. D.F.
A. Heredia
Affiliation:
Instituto de Física, UNAM, Ciudad Universitaria, Coyoacan. C.P. 01000, Mexico. D.F.
E. Villarreal
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Ciudad Universitaria, Coyoacan. C.P. 04510. Mexico. D.F.
J. Ocotlán-Flores
Affiliation:
Centro de Instrumentos, UNAM, Ciudad Universitaria, Coyoacan. C.P. 04510. Mexico. D.F.
A. L. Gomez-Cortes
Affiliation:
Instituto de Física, UNAM, Ciudad Universitaria, Coyoacan. C.P. 01000, Mexico. D.F.
F. J. Aranda-Manteca
Affiliation:
Facultad de Ciencias Marinas, UABC, Km 103 carret. Tijuana Ensenada. C.P. 453. Ensenada, Baja California, Mexico.
E. Orozco
Affiliation:
Instituto de Física, UNAM, Ciudad Universitaria, Coyoacan. C.P. 01000, Mexico. D.F.
L. Bucio
Affiliation:
Instituto de Física, UNAM, Ciudad Universitaria, Coyoacan. C.P. 01000, Mexico. D.F.
Get access

Abstract

The research about the structural stability of bone, as a composite material, compromises a complete understanding of the interaction between the mineral and organic phases. The thermal stability of human bone and type I collagen extracted from human bone by different methods was studied in order to understand the interactions between the mineral and organic phases when is affected by a degradation/combustion process. The experimental techniques employed were calorimetry and infrared spectroscopy (FTIR) techniques. The extracted type I collagens result to have a bigger thermal stability with a Tmax at 500 and 530 Celsius degrees compared with the collagen present in bone with Tmax at 350 Celsius degrees. The enthalpy value for the complete degradation/combustion process were similar for all the samples, being 8.4 +- 0.11 kJ/g for recent bones diminishing with the antiquity, while for extracted collagens were 8.9 +- 0.07 and 7.9 +-1.01 kJ/g. These findings demonstrate that the stability loss of type I collagen is due to its interactions with the mineral phase, namely carbonate hydroxyapatite. This cause a change in the molecular properties of the collagen during mineralization, specifically in its cross-links and other chemical interactions, which have a global effect over the fibers elasticity, but gaining tensile strength in bone as a whole tissue. We are applying this characterization to analyze the diagenetic process of bones with archaeological interest in order to identify how the environmental factors affect the molecular structure of type I collagen. In bone samples that proceed from an specific region with the same environmental conditions, the enthalpy value per unit mass was found to diminish exponentially with respect to the bone antiquity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Collins, M., Riley, M., Child, A. and Turner-Walker, G.. 1995. A basic mathematical simulation of the chemical degradation of ancient collagen. J. Archaeol. Sci 22, 175183.Google Scholar
2. Grupe, G. 1995. Preservation of collagen in bone from dry, sandy soil. J. Archaeol. Sci. 22, 193199.Google Scholar
3. Hedges, E. M., and Millard, A.. 1995. Bones and groundwater: Towards the modelling of diagenetic processes. J. Archaeol. Sci. 22, 155164.Google Scholar
4. Hedges, E. M., and Millard, A.. 1995. Measurements and relationships of diagenetic alteration of bone from three archaeological sites. J. Archaeol. Sci. 22, 201209.Google Scholar
5. Katzenberg, M. and Harrison, R.. 1997. What's in a bone? Recent advances in archaeological bone chemistry. J. Archaeol. Res. Vol. 5, No. 3, pp. 265293.Google Scholar
6. Lozano, L. F., Peña-Rico, M.A., Heredia, A., Ocoltlan-Flores, J., Gomez-Cortes, A.L., Velazquez, R. and Bucio, L. Thermal Analysis Study of Human Bone. 2002. Submitted.Google Scholar
7. Nielsen-Marsh, C., Hedges, R., Mann, T. and Collins, M.. 2000. A preliminary investigation of the application of differential scanning calorimetry to the study of collagen degradation in archaeological bone. Thermochim. Acta. 365, 129139.Google Scholar
8. Schoeninger, M., Moore, K., Murray, M. and Kingston, J.. 1989. Detection of bone preservation in archaeological and fossil samples. Applied Geochemistry, Vol. 4, pp. 281292.Google Scholar
9. Vento, C.E., Rodríguez, SR & Franco, M.L., 1981. La datación Absoluta por el método de colágeno residual en Cuba. Kobie (Bilbao), Grupo espeleológico Vizcaíno. Diputación Federal de Vizcaya. Vol. 11.Google Scholar