Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T06:01:09.888Z Has data issue: false hasContentIssue false

Theoretical Studies of Copper Oxide Clusters: Prediction of an Electronically Driven Phase Separation in YBa2Cu3Ox

Published online by Cambridge University Press:  28 February 2011

L. A. Curtiss
Affiliation:
Chemical Technology Division/Materials Science Division/Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
T. O. Brun
Affiliation:
Chemical Technology Division/Materials Science Division/Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
D. M. Gruen
Affiliation:
Chemical Technology Division/Materials Science Division/Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

On the basis of semi-empirical extended Hiickel molecular orbital calculations of copper-oxide clusters representing the new superconducting material YBa2Cu3Ox, a phase diagram is proposed which suggests that the 94 K high temperature superconducting phase of YBa2Cu3Ox is characterized by an oxygen stoichiometry near 7.0. The phase diagram predicts that a plateau should exist for Tc in the region x = 0.0 – 0.25 and that in this region two phases are present which are characterized by compositions having oxygen stoichiometries 6.5–6.75 and ca. 7.0.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J. G. and Muller, K. A., Z. Phys. B64, 189 (1986).Google Scholar
2. Chu, C. W., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., and Wang, Y. Q., Phys. Rev. Lett. 58, 405 (1987).Google Scholar
3. Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
4. Whangbo, M.-H., Evain, M., Beno, M. A., and Williams, J. M. Inorg. Chem. 26, 1831 (1987).Google Scholar
5. Whangbo, M.-H., Evain, M., Beno, M. A., and Williams, J. M. Inorg. Chem. 26, 1832 (1987).Google Scholar
6. Mattheiss, L. F. and Hamann, D. R., Sol. State Commin. 63, 395, (1987).Google Scholar
7. Yu, J., Massidda, S., Freeman, A. J., and Koelling, D. D., Phys. Lett., A122, 198 (1987).Google Scholar
8. Yu, J., Massidda, S., Freeman, A. J., and Koelling, D. D., Phys. Lett., A122, 203 (1987).Google Scholar
9. Hoffmann, R., J. Chem. Phys. 39, 1397 (1963).Google Scholar
10. Beno, M. A., Soderholm, L., Capone, D. W., Hinks, D. G., Jorgensen, J. D., Grace, J. D., Schuller, I. K., Segre, C. U., and Zhang, K., Appl. Phys. Lett. 51, 57 (1987).Google Scholar
11. Curtiss, L. A., Brun, T. O., and Gruen, D., Inorg. Chem., submitted.Google Scholar
12. Siegel, S., private communication.Google Scholar
13. Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B, submitted.Google Scholar
14. Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M., and Werder, D., Phys. Rev. B36, 5719 (1987).Google Scholar
15. Veal, B. W., talk presented at The Metallurgical Society meeting, Cincinnati, Ohio, Oct 12–14, 1987.Google Scholar