Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T02:22:51.269Z Has data issue: false hasContentIssue false

Theoretical Studies of C(100) Surface Reconstruction and Reaction with CH2

Published online by Cambridge University Press:  21 February 2011

Z. Jing
Affiliation:
Department of Physics, Box 8202, North Carolina State University, Raleigh, NC, 27695.
J. L. Whitten
Affiliation:
Department of Chemistry, Box 8201, North Carolina State University, Raleigh, NC, 27695.
Get access

Abstract

The reconstruction of the C(100) surface and its reaction with CH2 are studied by a cluster model at several theoretical levels [1–13]. For the reconstruction ofthe C(100) surface, the calculated surface dimer bond length is found to be very sensitive to the level of theoretical treatment and the spin state. A single-determinant SCF treatment gives a closed-shell singlet state, higher in energy than the triplet state, and with a dimer length of 1.401 Å, 0.279 Å shorter than the triplet. The correct ground state is a singlet, but a multi-determinant wavefunction is required for its description. At the CI level, the surface dimer bond length in the ground state is found to be 1.508 Å and the energy decrease on dimer formation with respect to the ideal C(100)-lxl surface is 2.28 eV per dimer. For the reaction of CH2 with C(100), no barrier is found for the chemisorption of CH2on the surface and the reaction is highly exothermic. The surface is converted from C(100)-2×1 to C( 100)-1×1 upon CH2 chemisorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Messier, R., Glass, J. T., Butler, J. E., and Roy, R., eds. “New Diamond Science and Technology”, MRS, Pittsburgh, 1991 Google Scholar
(2) Rudder, R. A., Hudson, G. C., Posthill, J. B., Thomas, R. E., Markunas, R. J., Humphreys, T. P. and Nemanich, R. J., Appl. Phys. Lett., 60, 329 (1992).Google Scholar
(3) Davis, R. F., Sitar, Z., Williams, B. E., Kong, H. S., Kim, H. J., Palmour, J. W., Edmond, J. A., Ryu, J., Glass, J. T., and Carter, C. H. Jr, Mater. Sci. Eng. B1, 77 (1988).Google Scholar
(4) Rudder, R. A., Posthill, J. B., and Markunas, R. J., Elect. Letters. 25, 1220 (1989).Google Scholar
(5) Spear, K. E., J. Am. Ceram. Soc. 72, 171 (1989).Google Scholar
(6) Kawarada, H., Ma, J. S., Yonehara, T., and Hiraki, A., MRS Symp. Proc. 162, 195 (1990).Google Scholar
(7) Itoh, H., Nakamura, T., Iwahara, H., and Sakamoto, H., in “New Diamond Science and Technology”, p. 929, eds. Messier, R., Glass, J. T., Butler, J. E., and Roy, R., 1991 Google Scholar
(8) Yarbrough, W. A., J. Vac. Sci. Technol. A 9, 1145 (1991).Google Scholar
(9) Prins, J. F., and Gaigher, H. L., in “New Diamond Science and Technology”, p. 561, eds. Messier, R., Glass, J. T., Butler, J. E., and Roy, R., MRS, Pittsburgh, 1991 Google Scholar
(10) Rudder, R. A., Hudson, G. G., LeGrice, Y. M., Mantini, M. J., Posthill, J. B., Nemanich, R. J. and Markunas, R. J., 1989 MRS Meeting, San Diego, CA, EA-19, 89 (1989).Google Scholar
(11) Verwoerd, W. S., Surf. Sci., 108, 153 (1981).Google Scholar
(12) Zheng, X. M. and Smith, P. V., Surf. Sci., 256, 1 (1991).Google Scholar
(13) Thomas, R. E., Rudder, R. A., Markunas, R. J., Huang, D., Frenklach, M., J. Chem. Vapor Dep., 1, 6 (1992).Google Scholar
(14) Thomas, R. E., Rudder, R. A., Markunas, R. J., J. Vac. Sci. Technol., A 10, 2451 (1992).Google Scholar
(15) Hamza, A. V., Kubiak, G. D. and Stulen, R. H., Surf. Sci., 237, 35 (1990).Google Scholar
(16) Lurie, P. G. and Wilson, J. M., Surf. Sci., 65, 453 (1977).Google Scholar
(17) Pate, B. B., Surf. Sci., 165, 83 (1986).Google Scholar
(18) Verwoerd, W. S., Surf. Sci, 103, 404 (1981); 108, 153 (1981).Google Scholar
(19) Bechstedt, F., and Reichardt, D., Surf. Sci., 202, 83 (1988).Google Scholar
(20) Mehandru, S. P., and Anderson, A. B., Surf. Sci, 248, 369 (1991).Google Scholar
(21) Appelbaum, J. A., and Hamann, D. R., Surf. Sci. 74, 21 (1978).Google Scholar
(22) Yang, Y. L. and D'Evelyn, M. P., J. Am. Chem. Soc., 114. 2796 (1992); J. Vac. Sci. Technol. A 10, 978 (1992).Google Scholar
(23) Takai, T., Halicioglu, T., and Tiller, W. A., Surf. Sci. 164, 341 (1985).Google Scholar
(24) Brenner, D. W., Phys. Rev. B 42, 9458 (1990).Google Scholar
(25) Zheng, X. M. and Smith, P. V., Surf. Sci. 256, 1 (1991).Google Scholar
(26) Huang, D. and Frenklach, M., J. Phys. Chem. 96, 1868 (1992).Google Scholar
(27) Tsuda, M., Oikawa, S., Furukawa, S., Sekine, C., and Hata, M., J. Electrochem. Soc. 139, 1482 (1992).Google Scholar
(28) Frauenheim, Th., Stephan, U., Blaudeck, P., Porezag, D., Busmann, H.-G., Zimmermann-Edling, W., and Lauer, S., unpublished.Google Scholar
(29) Yang, S. H., Drabold, D. A., and Adams, J. B., unpublished.Google Scholar
(30) Skokov, S., Carner, C. S., Weiner, B., and Frenklach, M., unpublished.Google Scholar
(31) Whitten, J. L. and Pakkanen, T. A., Phys. Rev. B 21 (1980) 4357. Google Scholar
(32) Cremaschi, P. and Whitten, J. L., Surf. Sci. 149 (1985) 273. Google Scholar