Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-18T06:01:56.205Z Has data issue: false hasContentIssue false

Theoretical Considerations on Growing Uniformly Thick Films of Perfect Crystallinity

Published online by Cambridge University Press:  15 February 2011

Jan H. Van Der Merwe*
Affiliation:
Department of Physics, University of South Africa, P O Box 392, Pretoria 0001 South Africa.
Get access

Abstract

Theoretical considerations that facilitate the design of procedures to grow epilayers of uniform thickness and perfect crystallinity are briefly reviewed. The attainment of uniformity and crystallinity are respectively best served by growing in the monolayer-by-monolayer mode and below a critical thickness. Equilibrium and non-equilibrium criteria developed to accomplish these goals are briefly dealt with.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hull, R. and Bean, J.C., (a) in Critical Reviews in Solid State and Materials Sciences. Vol. 17, edited by Greene, J.E. (CRC Press, Boca Raton, NY, 1992), p. 507; (b) ScGipta Metallurgica et Materialia, 27, 657, 663 (1992).Google Scholar
2 van der Merwe, J.H., in Interface Sci. 1993 (unpublished).Google Scholar
3 Bauer, E., Z. Kristallogr. 110, 423 (1958).Google Scholar
4 van der Merwe, J.H., in Critical Reviews in Solid State and Materials Science. Vol. 17, edited by Greene, J.E. (CRC Press, Boca Raton NY, 1992), p. 187.Google Scholar
5 Matthews, J.W., in Epitaxial Growth. Part 2, edited by Matthews, J.W. (Academic Press, NY, 1975), p. 559.Google Scholar
6 Vook, R.W., Int. Metall. Rev. 27, 209 (1982).Google Scholar
7 Pathria, R.K., in Statistical Mechanics (Pergamon Press, NY, 1977), p. 108, 455.Google Scholar
8 van der Merwe, J.H., in Chemistry and Physics of Solid Surfaces, edited by Vanselow, R. and Howe, R. (Springer Verlag, Berlin, 1984), p. 365.CrossRefGoogle Scholar
9 Bauer, E., Appl. Surf. Sci. 11/12, 479 (1982).CrossRefGoogle Scholar
10 Snyder, C.W., Mansfield, J.F., and Orr, B.G., Phys. Rev. B 46, 9551 (1992).Google Scholar
11 Markov, I. and Kaischew, R., Thin Solid Films 32, 163 (1976).CrossRefGoogle Scholar
12 Sudijone, J., Johnson, M.D., Snyder, C.W., Elowitz, M.B. and Orr, B.G., Phys. Rev. Lett. 69, 2811 (1992).Google Scholar
13 van der Merwe, J.H., Tönsing, D.L. and Stoop, P.M., Thin Solid Films, 1993 (unpublished).Google Scholar
14 Frank, F.C. and van der Merwe, J.H., Proa R. Soc. London Ser. A 198, 205 (1949).Google Scholar
15 Stoop, P.M., van der Merwe, J.H. and Braun, M.W.H., Philos, Mag. B 63, 907 (1991).Google Scholar
16 van der Merwe, J.H., Proa Phys. Soc. London Sect. A 63, 616 (1950).Google Scholar
17 van der Merwe, J.H., Mater. Sci. Eng. A 113, 5 (1988).Google Scholar
18 Freund, L.B., Scripta Metallurgica et Materialia, 27, 669 (1992).CrossRefGoogle Scholar
19 Tönsing, D.L., Stoop, P.M. and van der Merwe, J.H., Surf. Sci. 277, 193 (1992).Google Scholar
20 Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 32, 265 (1976).Google Scholar
21 Humphreys, C.J., in Materials Modeling. From Theory to Technology (IOP Publishing Ltd, 1992), p. 25.Google Scholar
22 Perovic, D.D. and Houghton, D.C., Mater. Res. Soc. Symp. Proc. Vol. 263 (MRS, Pittsburgh, 1992), p. 391.Google Scholar
23 Fischer, A. and Richter, A., Appl. Phys. Lett. 61, 2656 (1992).Google Scholar
24 Hull, R., Fischer-Colbrie, A., Rosner, S.J., Koch, S.M. and Harris, J.S., J. Appl. Phys. Lett. 51, 1723 (1987).Google Scholar
25 Jesser, W.A. and Kui, J. (Private Communication).Google Scholar