Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T00:20:29.003Z Has data issue: false hasContentIssue false

Terahertz Detectors Based on Silicon Technology Field Effect Transistors

Published online by Cambridge University Press:  15 June 2012

Wojciech Knap
Affiliation:
Université Montpellier 2 and CNRS, TERALAB-GIS, L2C UMR 5221, 34095 Montpellier, France
Franz Schuster
Affiliation:
Université Montpellier 2 and CNRS, TERALAB-GIS, L2C UMR 5221, 34095 Montpellier, France CEA-LETI, MINATEC Campus, 38054 Grenoble, France
Dominique Coquillat
Affiliation:
Université Montpellier 2 and CNRS, TERALAB-GIS, L2C UMR 5221, 34095 Montpellier, France
Frédéric Teppe
Affiliation:
Université Montpellier 2 and CNRS, TERALAB-GIS, L2C UMR 5221, 34095 Montpellier, France
Benoît Giffard
Affiliation:
CEA-LETI, MINATEC Campus, 38054 Grenoble, France
Dmytro B. But
Affiliation:
Université Montpellier 2 and CNRS, TERALAB-GIS, L2C UMR 5221, 34095 Montpellier, France Institute of Semiconductor Physics, 41 Nauki Ave., 03028 Kiev, Ukraine
Oleksander G. Golenkov
Affiliation:
Institute of Semiconductor Physics, 41 Nauki Ave., 03028 Kiev, Ukraine
Fedor F. Sizov
Affiliation:
Institute of Semiconductor Physics, 41 Nauki Ave., 03028 Kiev, Ukraine
Get access

Abstract

The concept of THz detection based on excitation of plasma waves in two-dimensional electron gas in Si FETs is one of the most attractive ones, as it makes possible the development of the large-scale integrated devices based on a conventional microelectronic technology including on-chip antennas and readout devices integration. In this work we report on investigations of Terahertz detectors based on low-cost silicon technology field effect transistors. We show that detectors, consisting of a coupling antenna and a n-MOS field effect transistor as rectifying element, are efficient for THz detection and imaging. We demonstrate that in the atmospheric window around 300 GHz, these detectors can achieve a record noise equivalent power below 10 pW/Hz0.5 and a responsivity above 90 kV/W once integrated with on-chip amplifier. We show also that they can be used in a very wide frequency range: from ∼0.2 THz up to 1.1 THz. THz detection by Si FETs pave the way towards high sensitivity silicon technology based focal plane arrays for THz imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sizov, F. and Rogalski, A., Progress in Quantum Electronics 34, 278 (2010).Google Scholar
2. Knap, W., Lusakowski, J., Parenty, T., Bollaert, S., Cappy, A., Popov, V. V., and Shur, M. S., Applied Physics Letters 84, 2331 (2004).Google Scholar
3. Tauk, R., et al. ., Applied Physics Letters 89, 253511 (2006).Google Scholar
4. Schuster, F., Knap, W., and Nguyen, V., Laser Focus World 47(7), 37 (2011).Google Scholar
5. Schuster, F., Coquillat, D., Videlier, H., Sakowicz, M., Teppe, F., Dussopt, L., Giffard, B., Skotnicki, T., and Knap, W., Optics Express 19, 7827 (2011).Google Scholar
6. Lisauskas, A., Pfeiffer, U., Ojefors, E., Bolivar, P. H., Glaab, D., and Roskos, H. G., Journal of Applied Physics 105, 114511 (2009).Google Scholar
7. Ojefors, E., Pfeiffer, U. R., Lisauskas, A., and Roskos, H. G., Solid-State Circuits, IEEE Journal of 44, 1968 (2009).Google Scholar
8. Dyakonov, M. and Shur, M., Physical Review Letters 71, 2465 (1993).Google Scholar
9. Dyakonov, M. I. and Shur, M. S., Electron Devices, IEEE Transactions on 43, 1640 (1996).Google Scholar
10. Knap, W., et al. ., Journal of Infrared, Millimeter and Terahertz Waves 30, 1319 (2009).Google Scholar
11. Pfeiffer, U. R., Ojefors, E., Lisaukas, A., Glaab, D., and Roskos, H. G., in Radio Frequency Integrated Circuits Symposium, 2009. RFIC 2009. IEEE, 2009), p. 433.Google Scholar
12. Perenzoni, D., Perenzoni, M., Gonzo, L., Capobianco, A. D., and Sacchetto, F., Analysis and Design of a CMOS-based Terahertz Sensor and Readout (Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, ETATS-UNIS, 2010).Google Scholar
13. Dobroiu, A., Yamashita, M., Ohshima, Y. N., Morita, Y., Otani, C., and Kawase, K., Appl. Opt. 43, 5637 (2004).Google Scholar
14. Videlier, H., Nadar, S., Sakowicz, M., Trinhvandam, T., Coquillat, D., Teppe, F., Dyakonova, N., Knap, W., and Skotnicki, T., 2009.Google Scholar
15. Sakowicz, M., Lifshits, M. B., Klimenko, O. A., Schuster, F., Coquillat, D., Teppe, F., and Knap, W., Journal of Applied Physics 110, 054512 (2011).Google Scholar
16. Lisauskas, A., Glaab, D., Roskos, H. G., Oejefors, E., and Pfeiffer, U. R., edited by Linden, K. J., Sadwick, L. P. and O’Sullivan, C. M. (SPIE, San Jose, CA, USA, 2009), p. 72150J.Google Scholar
17. Sizov, F., Golenkov, A., But, D., Sakhno, M., and Reva, V., Opto-Electronics Review 20, 194 (2012).Google Scholar
18. Knap, W., et al. ., Journal of Applied Physics 91, 9346 (2002).Google Scholar