Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-21T11:55:32.482Z Has data issue: false hasContentIssue false

Temperature evolution of pentacene crystal structure and phonon dynamics

Published online by Cambridge University Press:  01 February 2011

Matteo Masino
Affiliation:
Dipartimento di Chimica G.I.A.F., Università di Parma, and INSTM-UdR Parma, Parco Area delle Scienze, I-43100, Parma, Italy
Alberto Girlando
Affiliation:
Dipartimento di Chimica G.I.A.F., Università di Parma, and INSTM-UdR Parma, Parco Area delle Scienze, I-43100, Parma, Italy
Raffaele G. Della Valle
Affiliation:
Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, and INSTM-UdR Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
Elisabetta Venuti
Affiliation:
Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, and INSTM-UdR Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
Luca Farina
Affiliation:
Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, and INSTM-UdR Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
Aldo Brillante
Affiliation:
Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, and INSTM-UdR Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
Get access

Abstract

We investigate the relationships among all currently known X-ray structures of crystalline pentacene by calculating their “inherent” structures of minimum potential energy. We are thus able to show that two distinct bulk crystalline phases of pentacene exist, with very subtle but clear di.erences. We then assess the effects of temperature on the crystal structures, by including both inter- molecular and low-frequency intra-molecular phonons in the framework of quasi harmonic lattice dynamics methods. In this way we properly reproduce the experimental thermal expansion, and obtain a reliable description of the phonon dynamics and of its temperature dependence. The calculated phonon frequencies compare well with the experimental Raman spectrum.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Schön, J. H., Kloc, C. and Batlogg, B. Phys. Rev. Lett. 86, 3843 (2001).Google Scholar
[2] Schön, J. H., Phys. Stat. Sol. (b) 226, 257 (2001) and references therein.Google Scholar
[3] Lee, M. Schön, J. H., Kloc, Ch. and Batlogg, B. Phys. Rev. Lett. 86, 862 (2001).Google Scholar
[4] Sinova, J. Schliemann, J. Núñez, A. S., and MacDonald, A. H. Phys. Rev. Lett. 87, 226802–1 (2001).Google Scholar
[5] Venuti, E. Valle, R. G. Della, Brillante, A. Masino, M. and Girlando, A. J. Am. Chem. Soc. 124, 2128 (2002)Google Scholar
[6] Campbell, R. B. Roberston, J. M. and Trotter, J. Acta Crystallogr. 14, 705 (1961)Google Scholar
[7] Campbell, R. B. Roberston, J. M. and Trotter, J. Acta Crystallogr. 15, 289 (1962)Google Scholar
[8] Holmes, D. Kumaraswamy, S. Matzger, A. J. and Vollhardt, K. P. Chem. Eur. J. 5, 3399 (1999).Google Scholar
[9] Siegrist, T. Kloc, Ch. Schön, J. H., Batlogg, B. Haddon, R. C. Berg, S. and Thomas, G. A. Angew. Chem. Int. Ed. Engl. 40, 1732 (2001)Google Scholar
[10] Stillinger, F. H. and Weber, T. A. Phys. Rev. A 25, 978 (1982)Google Scholar
[11] Mattheus, C. C. Dros, A. B. Baas, J. Meetsma, A. Boer, J. L. de, and Palstra, T. T. M. Acta Crystallogr. C 57, 939 (2001)Google Scholar
[12] Ludwig, W. Recent Development in Lattice Theory, Springer Tracts in Modern Physics, Vol. 43 (Springer-Verlag, Berlin, 1967).Google Scholar
[13] Valle, R. G. Della, Venuti, E. and Brillante, A. Chem. Phys. 202, 231 (1996)Google Scholar
[14] Valle, R. G. Della and Venuti, E. Phys. Rev. B1 58, 206 (1998), and references therein.Google Scholar
[15] Girlando, A. Masino, M. Visentini, G. Valle, R. G. Della, Brillante, A. and Venuti, E. Phys. Rev. B1 62, 14476 (2000)Google Scholar
[16] Frisch, M. J. et al.; Gaussian 98, Revision A.5 (Gaussian, Inc., Pittsburgh PA, 1998).Google Scholar
[17] Lee, C. Yang, W. and Parr, R. G. Phys. Rev. B 37, 785 (1988)Google Scholar
[18] Pertsin, A. J. and Kitaigorodsky, A. I. The atom-atom potential method (Springer-Verlag, Berlin, 1987).Google Scholar
[19] Williams, D. E. J. Chem. Phys. 47, 4680 (1967)Google Scholar
[20] Califano, S. Schettino, V. and Neto, N. Lattice Dynamics of Molecular Crystals (Springer-Verlag, Berlin, 1981).Google Scholar
[21] Filippini, G. and Gramaccioli, C. M. Chem. Phys. Lett. 104, 50 (1984)Google Scholar
[22] Santoro, A. and Mighell, A. D. Acta Cryst. A 26, 124 (1970)Google Scholar
[23] Philippi, E. Sitzungsber. Akad. Wiss. Wien, Math. -Naturwiss. Kl., Abt. 2B, 638 (1929).Google Scholar
[24] Dabestani, R. and Ivanov, I. N. Photochem. Photobiol. 70, 10 (1999)Google Scholar
[25] DeKruif, C. G. J. Chem. Thermodyn. 12, 243 (1980)Google Scholar