Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T02:56:39.047Z Has data issue: false hasContentIssue false

Temperature Dependent Quenching Mechanisms of the Luminescence of InGaAs/GaAs Strained Quantum Wells

Published online by Cambridge University Press:  25 February 2011

F. Martelli
Affiliation:
Fondazione Ugo Bordoni, via B. Castiglione 59,I-00142 Roma, Italy
A. D'Ottavi
Affiliation:
Fondazione Ugo Bordoni, via B. Castiglione 59,I-00142 Roma, Italy
B. Catania
Affiliation:
Fondazione Ugo Bordoni, via B. Castiglione 59,I-00142 Roma, Italy
M. R. Bruni
Affiliation:
ITSE-CNR, Area della ricerca di Roma, c.p. 10, I-00016 Monterotondo Stazione (Roma), Italy.
M. G. Simeone
Affiliation:
ITSE-CNR, Area della ricerca di Roma, c.p. 10, I-00016 Monterotondo Stazione (Roma), Italy.
M. Zugarini
Affiliation:
ITSE-CNR, Area della ricerca di Roma, c.p. 10, I-00016 Monterotondo Stazione (Roma), Italy.
Get access

Abstract

In this work we report on detailed temperature dependent photoluminescence measures on InGaAs/GaAs strained layer quantum well structures. Excitation energies above and below the GaAs band gap have been used in order to separate the contributions of the carrier trapping to the generation-recombination processes from the recombination mechanisms proper of the quantum wells. The results show that a decrease of the trapping efficiency contributes to the photoluminescence quenching, and suggest that the strong photoluminescence quenching observed in these structures should be mainly attributed to defects present in the quantum wells. A clear dependence of the luminescence quenching on the excitation intensity has also been found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Anderson, N.G., Lo, Y.C., and Kolbas, R.M., Mat. Res. Soc. Symp. Proc. 77, 437 (1987).Google Scholar
2. Lambkin, J.D., Dunstan, D.J., Homewood, K.P., Howard, L.K., and Emeny, M.T., Appl. Phys. Lett. 57, 1986 (1990).Google Scholar
3. Bacher, G., Schweizer, H., Kovac, J., Forchel, A., Nickel, H., Schlapp, W., and Lösch, R., Phys. Rev. B43, 9312 (1991).Google Scholar
4. Jiang, D.S., Jung, H., and Ploog, K., J. Appl. Phys. 64, 1371 (1988).Google Scholar
5. Martelli, Faustino, Proietti, Maria Grazia, Simeone, Maria Gabriella, Bruni, Maria Rita, and Zugarini, Marco, J. Appl. Phys. 71, 539 (1992).Google Scholar
6. Gurioli, Massimo, Martinez-Pastor, Juan, Colocci, Marcello, Deparis, Christiane, Chastaingt, Bruno, and Massies, J., Phys. Rev. B46, 6922 (1992).Google Scholar
7. Polimeni, A., Sarto, F., Capizzi, M., Martelli, F., Bruni, M.R., and Simeone, M.G., to be published.Google Scholar
8. Warwick, C.A., Jan, W.Y., Ourmazd, A., and Harris, T.D., Appl. Phys. Lett., 56, 2666 (1990).Google Scholar
9. Oberli, D.Y., Shah, J., Jewell, J.L., Damen, T.C., and Chand, N., Appl. Phys. Lett., 54, 1028 (1989).Google Scholar
10. Murayama, Yoshimasa, Phys. Rev. B34, 2500 (1986).Google Scholar
11. Liang, Lie, and Lent, Craig S., J. Appl. Phys. 68, 1741 (1990).Google Scholar