Hostname: page-component-788cddb947-55tpx Total loading time: 0 Render date: 2024-10-14T17:32:21.851Z Has data issue: false hasContentIssue false

TEM Investigations of CdTe/GaAs(001) Interfaces

Published online by Cambridge University Press:  25 February 2011

J. E. Angelo
Affiliation:
University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis, MN 55455.
W. W. Gerberich
Affiliation:
University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis, MN 55455.
G. Bratina
Affiliation:
Laboratorio Tecnologie Avanzate Superfici e Catalisi, Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, I-34012 Trieste, Italy and University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis, MN 55455.
L. Sorba
Affiliation:
Laboratorio Tecnologie Avanzate Superfici e Catalisi, Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, I-34012 Trieste, Italy and University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis, MN 55455.
A. Franciosi
Affiliation:
Laboratorio Tecnologie Avanzate Superfici e Catalisi, Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, I-34012 Trieste, Italy and University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis, MN 55455.
Get access

Abstract

In this study, cross-sectional transmission electron microscopy (XTEM) was used to investigate the defect structure which occurs at the interface between CdTe(001) and GaAs(001). The heterostructures were fabricated by molecular beam epitaxy on chemically etched and thermally deoxidized GaAs(001) substrates as well as GaAs(001) buffer layers grown in-situ by molecular beam epitaxy. This allowed for investigation of the GaAs surface preparation on the subsequent interfacial structure. The as-etched substrate led to a microscopically rough interface with the CdTe depositing in etch pits on the GaAs surface, while growth on the buffer layer led to a macroscopically flat interface. Further, growth was accomplished on different Te-induced surface reconstructions ((6×1) vs (2×1)) in an effort to understand the role of the precursor surface treatment on the subsequent interfacial structure. In this case growth on the (6×1) reconstruction led to the introduction of (111)-oriented inclusions at the interface, while the (2×1) reconstruction led to pure (001)-oriented growth. A mechanism for the formation of planar defects at the CdTe/GaAs(001) interface is described which is based on local misorientations of the CdTe and GaAs. Finally, preliminary results of ex-situ annealing experiments on the interfacial defect structure will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Feldman, R.D., Austin, R.F., Disker, D.W., Jaffers, K.S., and Bridenbaugh, P.M., Appl. Phys. Lett. 48 (1986) 248.Google Scholar
[2] Otsuka, N., Kolodziejski, L.A., Gunshor, R.L., Datta, S., Bicknell, R.N., and Schetzina, J.F., Appl. Phys. Lett. 46 (1985) 860.Google Scholar
[3] Tatarenko, S., Cibert, J., Gobil, Y., Feuillet, G., Saminadayar, K., Chami, A.C., and Ligeon, E., Appl. Surf. Sci. 41/42 (1989) 470.Google Scholar
[4] Bratina, G., Sorba, L., Antonini, A., Ceccone, G., Nicolini, R., Biasiol, G. and Franciosi, A., Angelo, J., and Gerberich, W.W., submitted Phys. Rev. B.Google Scholar
[5] Tatarenko, S., Saminadayar, K., Cibert, J., Gobil, Y., Cohen-Solal, G., and Bailly, F., in: Growth of Compound Semiconductors 2, (SPIE Proc. 944, Bellingham, WA, 988) p. 2.Google Scholar
[6] Gobil, Y., Cibert, J., Saminadayar, K., and Tatarenko, S., Surf. Sci. 211/212 (1989) 969.Google Scholar
[7] Tatarenko, S., Saminadayar, K., and Cibert, J., Appl. Phys. Lett. 51 (1987) 1690.Google Scholar
[8] Faurie, J.P., Hsu, C., Sivannthan, S., and Chu, X., Surface Sci. 168 (1986) 473.Google Scholar
[9] Feldman, R.D. and Austin, R.F., Appl. Phys. Lett. 49 (1986) 954.Google Scholar
[10] Srinivasa, R., Panish, M.B., and Temkin, H., Appl. Phys. Lett. 50 (1987) 1441.Google Scholar
[11] Ligeon, E., Chami, C., Danielou, R., Feuillet, G., Fontenille, J., Saminadayar, K., Ponchet, A., Cibert, J., Gobil, Y., and Tatarenko, S., J. Appl. Phys. 67 (1990) 2428.Google Scholar
[12] Reno, J. L., Bourley, P. L., Monfroy, G., and Faurie, J. P., Appl. Phys. Lett. 53 (1988) 1747.Google Scholar
[13] Cohen-Solal, G., Bailly, F., and Barbé, M., Appl. Phys. Lett. 49 (1986) 1519.Google Scholar
[14] Ponce, F.A., Anderson, G.B., and Ballingall, J.M., Surf. Sci. 168 (1986) 564.Google Scholar
[15] Otsuka, N., Choi, C., Nakamura, Y., Nagakura, S., Fischer, R., Peng, C.K., and Morkoc, H., Appl. Phys. Lett. 49, (1986) p.277.Google Scholar
[16] Vannuffel, C., Beaucour, J., André, J.P., and Chevalier, J.P., in: Microsc. of Semicond. Mater. (Bristol: Institute of Physics, 1989) p. 115.Google Scholar
[17] Angelo, J.E., Kuznia, J.N., Wowchak, A.M., Cohen, P.I., and Gerberich, W.W., Appl. Phys. Lett. 59 (1991) 63.Google Scholar
[18] Sands, T., Harbison, J.P., Tabatabaie, N., Chan, W.K., Gilchrist, H.L., Cheeks, T.L., Florez, L.T., and Keramidas, V.G., Surf. Sci. 228 (1990) p. 1.Google Scholar
[19] Angelo, J.E., Gerberich, W.W., Bratina, G., Sorba, L., and Franciosi, A., submitted to J. Crys. Growth (1992).Google Scholar
[20] Angelo, J.E., Gerberich, W.W., Stobbs, W.M., Bratina, G., Sorba, L., and Franciosi, A., submitted to Phil. Mag. Lett. (1992).Google Scholar
[21] Schwartzman, A.F., in: High Resolution Electron Microscopy of Defects in Materials, (Mater. Res. Soc. Proc. 183, Pittsburgh, PA 1990) p. 161.Google Scholar