Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T21:52:58.550Z Has data issue: false hasContentIssue false

Synthesis of Tio2 Meso-Structured Thin Films

Published online by Cambridge University Press:  10 February 2011

H. S. Zhou
Affiliation:
Energy Division, Electrotechnical Laboratory (ETL), Umezono, Tsukuba, Ibaraki 305, Japan
I. Honma
Affiliation:
Energy Division, Electrotechnical Laboratory (ETL), Umezono, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Highly ordered self-assembly organized silica meso-structured architecture have attracted increasing attention because these materials provide a rich source for scientific research and technological applications. This approach to meso-structured materials has been extended to non-silica oxides, especially transition-metal-oxides which might promise applications involving electron transfer and photocatalysts. We report the syntheses of TiO2 transition-metal-oxides meso-structured thin films (MSTF) using a surfactant templating processing with spin coating method. X-ray diffraction patterns of the films showed that the films generally oriented in a lamellar structure. The phase transferring in TiO2 MSTF was also investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kresge, C. T., Leonowicz, M. E., Vartuli, J. C., Beck, J. S., Nature, 1992, 359, 710.10.1038/359710a0Google Scholar
2. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., Schlenker, J. L., J. Am. Chem. Soc., 1992, 114, 10834.10.1021/ja00053a020Google Scholar
3. Wu, C. G., Bein, T., Science, 1994, 264, 1757,10.1126/science.264.5166.1757Google Scholar
4. Ogawa, M., J. Amer. Chem. Soc. 1994, 116, 7941.10.1021/ja00096a079Google Scholar
5. Yang, H., Kuperman, A., Coombs, N., Mamiche-Afra, S., Ozin, A, Nature, 1996, 379, 703 10.1038/379703a0Google Scholar
6. Aksay, I. A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P. M., Gruner, S. M., Science, 1996, 273, 892.10.1126/science.273.5277.892Google Scholar
7. Trau, M., Yao, N., Kim, E., Xia, Y., Whitesides, G. M., Aksay, I. A., Nature, 1997, 390, 674.10.1038/37764Google Scholar
8. Honma, I., Zhou, H. S., Kundu, D., submitted Langmuir.Google Scholar
9. Antonelli, D. M., Ying, J. Y., Angew. Chem. Int. Ed. Engl. 1995, 34, 2014.10.1002/anie.199520141Google Scholar
10. Putnam, R. L., Nakagawa, N., McGrath, K. M., Yao, N., Aksay, I. A., Gruner, S. M., Navrotsky, A., Chem. Mater. 1997, 9, 2690.10.1021/cm970419xGoogle Scholar
11. Zhou, H. S., Honma, I., in preparation.Google Scholar
12. Kundu, D., Zhou, H. S., Honma, I., J. Mater. Sci. Lett 1998, 17, 2089 10.1023/A:1006684117323Google Scholar
13. Yang, P., Zhao, D., Margolese, D., Chmelka, B. F., Stucky, G. D., Nature, 1998, 396, 152 10.1038/24132Google Scholar