Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T08:01:45.297Z Has data issue: false hasContentIssue false

Synthesis of Tin Oxide Thin Films by Pulsed Laser Deposition Using SnO2Targets

Published online by Cambridge University Press:  21 March 2011

Yoshiaki Suda
Affiliation:
Department of Electrical Engineering, Sasebo National College of Technology, Okishin 1-1, Sasebo, Nagasaki, 857-1193, Japan
Hiroharu Kawasaki
Affiliation:
Department of Electrical Engineering, Sasebo National College of Technology, Okishin 1-1, Sasebo, Nagasaki, 857-1193, Japan
Kazuya Doi
Affiliation:
Department of Electrical Engineering, Sasebo National College of Technology, Okishin 1-1, Sasebo, Nagasaki, 857-1193, Japan
Jun Nanba
Affiliation:
Department of Electrical Engineering, Sasebo National College of Technology, Okishin 1-1, Sasebo, Nagasaki, 857-1193, Japan
Kenji Wada
Affiliation:
Department of Chemistry and Biotechnology, Sasebo National College of Technology, Okishin 1-1, Sasebo, Nagasaki, 857-1193, Japan
Kenji Ebihara
Affiliation:
Department of Electrical and Computer Engineering, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-0862, Japan
Tamiko Ohshima
Affiliation:
Department of Electrical and Computer Engineering, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-0862, Japan
Get access

Abstract

Tin oxide (SnO2) thin films have been grown on Si (100) and Al2O3 substrates by pulsed Nd:YAG (532nm) and KrF excimer (248 nm) laser deposition methods using SnO2 targets. X-ray diffraction measurement showed that the almost amorphous microstructure transformed into a crystalline SnO2 phase and preferred orientation varied from (101) to (110) on Si (100) with increasing oxygen gas pressure. This result suggests that oxygen gas pressure affects the phase formation, crystalline structure and preferred orientation of the films. Gas sensing properties of SnO2 thin films by PLD method were also investigated over the temperature range 300 – 600°C, using 0.31vol%H2 as a test gas. The oxygen gas pressure results in a notable change in gas sensing properties of SnO2 thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wagner, C., J. Chem. Phys. 18, 69 (1950).Google Scholar
2. Haffe, K., Adv. Catal. 7, 366 (1955).Google Scholar
3. Bielanski, A., Deren, J., Haber, J., Nature 179, 668 (1957)Google Scholar
4. Sberveglieri, G., Sens. and Actuators B23, 103 (1995).Google Scholar
5. Hvang, J. L., Kou, D. W. and Shew, B. Y., Surf. Coat. Technol. 79, 263 (1996).Google Scholar
6. Cha, K. H., Park, H. C. and Kim, K. H., Sens. Actuators B21, 91 (1994).Google Scholar
7. Micocci, G., Serra, A., Ciciliano, P., Tepore, A. and Adib, Z. A., Vacuum 47, 1175 (1995).Google Scholar
8. Demarne, V., Grisel, A., Sanjines, R. , D, , Rosen-Feld and Levy, F., Sens. Actuators B7, 704 (1992).Google Scholar
9. Ippommatsu, M.. Ohnishi, H., Sasaki, H. and Matsumoto, T., J. Appl. Phys. 69 (1991) 8368.Google Scholar
10. Lober, K., Ludwig, M. and Schineider, H. A., Sens. Actuators B3, 69 (1991).Google Scholar
11. Sanjines, R., Demarne, V. and Levy, F., Thin Solid Films 193/194, 935 (1990).Google Scholar
12. Cooper, R. B., Advani, G. N. and Iordan, A. G., J. Electron. Mater. 10, 455 (1981).Google Scholar
13. Ansari, S. C., Gosavi, S. W., Gangal, S. A., Karekar, R. N. and Aiyer, R. C., J. Mater. Sci.: Mater Electron. 8, 23 (1997).Google Scholar
14. Kim, H. and Park, C. G., J. Electrochem. Soc. 138, 2408 (1991).Google Scholar
15. Gautheron, B., Labeau, M., Debabovglise, G. and Schmatz, U., Sens. Actuators B15–16, 357 (1993).Google Scholar
16. Ogawa, H., Nishikawa, M. and Abe, A., J. Appl. Phys. 53, 4448 (1982).Google Scholar
17. Sberveglieri, G., Croppelli, S., Nelli, P. and Camanzl, A., Sens. Actuators B5, 253 (1991).Google Scholar
18. Miyoshi, T. and Onisawa, K., J. Chem. Soc. Jpn. 150, 831 (1984).Google Scholar
19. Yamamoto, T., Shimazaki, T., Terayama, K. and Nakatani, N., J. Mater. Sci. Let. 17, 891 (1998).Google Scholar
20. Suda, Y., Nakazono, T., Ebihara, K. and Baba, K., Nucl. Instr. and Meth. in Phys. Res. B121, 396 (1997).Google Scholar
21. Suda, Y., Nakazono, T., Ebihara, K., Baba, K. and Hatada, H., Materials Chemistry and Physics 54, 177 (1998).Google Scholar
22. Suda, Y., Kawasaki, H., Terajima, R., Emura, M., Baba, K., Abe, H., Yoshida, H., Ebihara, K. and Aoqui, S., J. Korea. Phys. Soc. 35, S88 (1999).Google Scholar
23. Suda, Y., Kawasaki, H., Doi, K. and , S, , Hiraishi, Grain Boundary Engineering in Ceramics 118, 535 (2001).Google Scholar
24. Suda, Y., Kawasaki, H., Terajima, R. and Emura, M., Jpn. J. Appl. Phys. 38, 3619 (1999).Google Scholar
25. Suda, Y., Nakazono, T., Ebihara, K. and Baba, K., Thin Solid Films 281–282, 324 (1996).Google Scholar
26. Suda, Y., Kawasaki, H., Doi, K., and Hiraishi, S., Thin Solid Films 374, 282 (2000).Google Scholar
27. Suda, Y., Nakazono, T., Ebihara, K., Baba, K. and Aoqui, S., Carbon 36, 771 (1998).Google Scholar
28. Suda, Y., Doi, K., Namba, J., Imura, F. and Kawasaki, H., Jpn. J. Appl. Phys. 40, 1061 (2001).Google Scholar
29. Suda, Y., Ebihara, K., Baba, K., Abe, H. and Grishin, A. M., Nano Structured Materials 12, 291 (1999).Google Scholar