Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-23T02:28:27.604Z Has data issue: false hasContentIssue false

Synthesis of Nanocrystalline Hexagonal Diamond Films in Organic Solvents by Femtosecond Laser Irradiation

Published online by Cambridge University Press:  01 February 2011

Anming Hu
Affiliation:
a2hu@uwaterloo.ca, University of Waterloo, Physics and Astronomy, 200 Univ. Ave. West, Waterloo, ON, N2L 3G1, Canada, 1-519-8884567-33620
Walt W. Duley
Affiliation:
wwduley@uwaterloo.ca, University of Waterloo, Physics, 200 Univ. Ave. West, Waterloo, ON, N2L 3G1, Canada
Get access

Abstract

Nanocrystalline diamond films have been synthesized on various substrates by 800 nm fs laser irradiation of a variety of organic solvents including acetone, pentane, hexane, heptane, octane, dodecane, and hexadecane in the presence of a transition metal catalyst. 632 nm Raman spectra display a strong vibration mode at 1308 cm−1 characteristic of hexagonal diamond. X-ray photoelectron spectra confirm that the film is mainly sp3-bonded carbon containing a low concentration of sp2-bonded inclusions. Film microstructure shows that these films are assembled from nanoparticles having an average size of < 100 nm. Analysis of the liquid after irradiation using HPLC techniques indicates that polyyne molecules are also synthesized during irradiation. It is possible that these species are formed as the products of ion chemistry following Coulomb explosion. This process may enable a new method for the creation of nanocrystalline hexagonal diamond layers for micro-electronic and other applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).Google Scholar
2. Wagner, J., Ramsteiner, M., Wild, Ch., and Koidl, P., Phys. Rev. B 40, 1817 (1989).10.1103/PhysRevB.40.1817Google Scholar
3. Zhang, H., Tian, J., Tang, W., and Lu, F., Carbon, 41, 579 (2003).Google Scholar
4. Sun, Z., Shi, J. R., Tay, B. K., and Lau, S. P., Diamond. Rel. Mater. 9, 1979 (2000).Google Scholar
5. Hu, A., Alkhesho, I., Zhou, H., Duley, W. W., Diamond Rel. Mater. 16, 149 (2007).Google Scholar
6. Rossi, M. C., Appl. Phys. Lett. 73, 1203 (1998).Google Scholar
7. Bundy, F. P. and Kasper, J. S., J. Chem. Phys. 46, 3437 (1967).Google Scholar
8. Yoshiasa, A., Murai, Y., Ohtaka, O., and Katsura, T., Jpn. J. Appl. Phys. 42, 1694 (2003).10.1143/JJAP.42.1694Google Scholar
9. Misra, A., Tyagi, P. K., Yadav, B. S., Rai, P., and Misra, D. S., Pancholi, V., and Samajdar, I. D., Appl. Phys. Lett. 89, 071911 (2006).Google Scholar
10. Hu, A., Rybachuk, M., Lu, Q. B., and Duley, W. W., Appl. Phys. Lett. 91, 131906 (2007).10.1063/1.2793628Google Scholar
11. Ferrari, A. C. and Robertson, J., Phys. Rev. B 61, 14095 (2000).Google Scholar
12. Hu, A., Lu, Q. –B., Duley, W. W., and Rybachuk, M., J. Chem. Phys. 126, 154705 (2007).Google Scholar
13. Schwan, J., Ulrich, S., Batori, V., and Ehrhardt, H., Silva, S. R. P., J. Appl. Phys. 80, 440 (1996).10.1063/1.362745Google Scholar
14. He, H., Sekine, T., and Kobayashi, T., Appl. Phys. lett. 81, 610 (2002).Google Scholar
15. Darmstadt, H., Summchen, L., Roland, U., Roy, C., Kaliaguine, S. and Adnot, A., Surf. Inter. Analysis 25, 245 (1997).10.1002/(SICI)1096-9918(199704)25:4<245::AID-SIA229>3.0.CO;2-U3.0.CO;2-U>Google Scholar
16. Zhang, Z., Wei, B. Q., and Ajayan, P. M., Appl. Phys. Lett. 79, 4207 (2001).10.1063/1.1426256Google Scholar
17. Hu, A., Griesing, S., Rybachuk, M., Lu, Q. –B., and Duley, W. W., J. Appl. Phys. 102, 074311 (2007).Google Scholar
18. Shi, R., Li, H. J., Yang, Z., and Kang, M. K., Carbon 35, 1789 (1997).Google Scholar
19. Oberlin, A., Carbon 40, 7 (2002).Google Scholar
20. Tang, X., Wang, S., Elshakre, M. E., Gao, L., Wang, Y., Wang, H., and Kong, F., J. Phys. Chem. A 107, 13 (2003).Google Scholar
21. Buzza, S. A., Snyder, E. M., and Castleman, A. w. Jr, J. Chem.. Phys. 104, 5040 (1996).Google Scholar
22. Wang, S., Tang, X., Gao, L., Elshakre, M. E., Kong, F., J. Phys. Chem. A 107, 6123 (2003).Google Scholar