Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T21:54:41.844Z Has data issue: false hasContentIssue false

Synthesis of Graphene-ZnO Heterogeneous Nanostructures by Chemical Vapor Deposition

Published online by Cambridge University Press:  27 September 2011

Jian Lin
Affiliation:
Department of Mechanical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Miroslav Penchev
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Guoping Wang
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Rajat K Paul
Affiliation:
Department of Mechanical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Jiebin Zhong
Affiliation:
Department of Mechanical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Xiaoye Jing
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Mihrimah Ozkan
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Cengiz S. Ozkan
Affiliation:
Department of Mechanical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A. Department of Material science and engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

In this work, we report the synthesis and characterization of three dimensional heterostructures graphene nanostructures (HGN) comprising continuous large area graphene layers and ZnO nanostructures, fabricated via chemical vapor deposition. Characterization of large area HGN demonstrates that it consists of 1-5 layers of graphene, and exhibits high optical transmittance and enhanced electrical conductivity. Electron microscopy investigation of the three dimensional heterostructures shows that the morphology of ZnO nanostructures is highly dependent on the growth temperature. It is observed that ordered crystalline ZnO nanostructures are preferably grown along the <0001> direction. Ultraviolet spectroscopy indicates that the CVD grown HGN layers has excellent optical properties. A combination of electrical and optical properties of graphene and ZnO building blocks in ZnO based HGN provides unique characteristics for opportunities in future optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Liu, G., Velasco, J., Bao, W. Z., Lau, C. N., Appl. Phys. Lett. 2008, 92, 203103.Google Scholar
[2] Lin, J., Teweldebrhan, D., Ashraf, K., Liu, G., Jing, X., Yan, Z., Li, R., Ozkan, M., Lake, R., Balandin, A. A., Ozkan, C. S., Small 2010, 6.Google Scholar
[3] Mohanty, N., Berry, V., Nano Lett. 2008, 8, 4469.Google Scholar
[4] Wang, X., Zhi, L. J., Mullen, K., Nano Lett. 2008, 8, 323.Google Scholar
[5] Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., Ponomarenko, L. A., Morozov, S. V., Gleeson, H. F., Hill, E. W., Geim, A. K., Novoselov, K. S., Nano Lett. 2008, 8, 1704.Google Scholar
[6] Liu, Z. F., Liu, Q., Huang, Y., Ma, Y. F., Yin, S. G., Zhang, X. Y., Sun, W., Chen, Y. S., Advanced Materials 2008, 20, 3924.Google Scholar
[7] Shen, Z. X., Ni, Z. H., Wang, H. M., Luo, Z. Q., Wang, Y. Y., Yu, T., Wu, Y. H., J. Raman Spectrosc. 2010, 41, 479.Google Scholar
[8] Hwang, J. O., Lee, D. H., Kim, J. Y., Han, T. H., Kim, B. H., Park, M., No, K., Kim, S. O., J. Mater. Chem. 2010, online publication .Google Scholar
[9] Kim, Y. J., Lee, J. H., Yi, G. C., Appl. Phys. Lett. 2009, 95.Google Scholar
[10] Duck Hyun Lee, J. E. K., Hee Han, Tae, Won Hwang, Jae, Jeon, Seokwoo, Choi, Sung-Yool, Hyung Hong, Soon, Jong Lee, Won, Rodney, a. S. O. K. Ruoff, S., Adv. Mater 2010.Google Scholar
[11] Zhang, H., Yin, Z. Y., Y., Z., Wu, S. X., Zhou, X. Z., Huang, X., Zhang, Q. C., Boey, F., Small 2010, 6, 307.Google Scholar
[12] Yang, P. D., Yan, H. Q., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R. R., Choi, H. J., Adv. Funct. Mater. 2002, 12, 323.Google Scholar
[13] Law, M., Greene, L. E., Johnson, J. C., Saykally, R., Yang, P. D., Nat. Mater. 2005, 4, 455.Google Scholar
[14] Wang, X. D., Song, J. H., Liu, J., Wang, Z. L., Science 2007, 316, 102.Google Scholar
[15] Wang, Z. L., Song, J. H., Science 2006, 312, 242.Google Scholar
[16] Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., Kong, J., Nano Lett. 2009, 9, 3087.Google Scholar
[17] Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., Geim, A. K., Science 2008, 320, 1308.Google Scholar