Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T06:56:21.675Z Has data issue: false hasContentIssue false

Synthesis of Cuprate Based High-Tc Superconductors by Polymerized Complex Method

Published online by Cambridge University Press:  25 February 2011

Masato Kakihana
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 227, Japan
Masahiro Yoshimura
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 227, Japan
Hiromasa Mazaki
Affiliation:
Department of Mathematics and Physics, The National Defense Academy, Hashirimizu I-10–20, Yokosuka 239, Japan
Hiroshi Yasuoka
Affiliation:
Department of Mathematics and Physics, The National Defense Academy, Hashirimizu I-10–20, Yokosuka 239, Japan
Lars BöRj Esson
Affiliation:
Department of Physics, Chalmers University of Technology, S412 96 Göteborg, Sweden
Get access

Abstract

We report on a novel precursor technique to produce highly pure and homogeneous cuprate based high-Tc superconductors based on the formation of a polymer metal complex in which various metal ions in desired stoichiometric ratio can be uniformly dispersed. Application of the polymerized complex method is demonstrated on the ceramic synthesis of polycrystalline compounds viz. YBa2Cu3Oy, YBa2Cu4Oy, Bi1.6Pb0.4Sr2Ca2Cu3Oy and Bi2Sr2Ca0.8Cu2Oy. The superconducting properties were studied with complex magnetic susceptibility measurements which exhibited sharp superconducting transitions without any indication of two-phase character. The materials fabricated by this method showed improved properties compared to those for ceramic samples of previously reported synthesis procedures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ravindranathan, P., Komarneni, S., Bhalla, A., Roy, R. and Cross, L. E., J. Mater. Res. 3, 810 (1988).CrossRefGoogle Scholar
2. Barboux, P., Tarascon, J. M., Greene, L. H., Hull, G. W. and Bagley, B. G., J. Appl. Phys. 65, 2725 (1988).CrossRefGoogle Scholar
3. Pechini, M., U. S. Patent No. 3 330 697 (11 July 1967).Google Scholar
4. Anderson, H. U., Pennell, M. J. and Guha, J. P., in Advances in Ceramics, Ceramic Powder Science, edited by Messing, G. L., Mazdiyasni, K. S., McCauley, J. W. and Haber, R. A. (Am. Ceram. Soc. 21, Westerville, OH, 1987), p.91.Google Scholar
5. Eror, N. G. and Anderson, H. U., in Better Ceramics Through Chemistry 11, edited by Brinker, C. J., Clark, D. E. and Ulrich, D. R. (Mater. Res. Soc. Proc. 73, Pittsburgh, PA 1986)p.571577.Google Scholar
6. Lessing, P. A., Am. Ceram. Soc. Bull. 168, 1002 (1989).Google Scholar
7. Budd, K. O. and Payne, D. A., in Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E. and Ulrich, D. R. (Mater. Res. Soc. Proc. 32, Elsevier New York, 1984) p.239244.Google Scholar
8. Cho, S. G., Johnson, P. F. and Condrate, R. A. Sr, J. Mater. Sci. 25, 4738 (1990).CrossRefGoogle Scholar
9. Saunders, K. J., Organic Polymer Chemistry, (Chapman-Hall, London, 1973), Chapt. 10.CrossRefGoogle Scholar
10. Kakihana, M., Börjesson, L., Eriksson, S. and Svedlindh, P., J. Appl. Phys. 69, 867 (1991).CrossRefGoogle Scholar
11. Kakihana, M., Käil, M., Börjesson, L., Mazaki, H., Yasuoka, H., Berastegui, P., Eriksson, S. and Johansson, L. G., Physica C, 173, 377 (1991).CrossRefGoogle Scholar
12. Mazaki, H., Kakihana, M. and Yasuoka, H., Japan. J. Appl. Phys. 30, 38 (1991).CrossRefGoogle Scholar
13. Kakihana, M., Yoshimura, M., Mazaki, H., Yasuoka, H. and Börjesson, L., J. Appl. Phys. 70 (15 April, 1992) in press.Google Scholar
14. Kakihana, M., Börjesson, L. and Eriksson, S., Physica B, 165&166, 1245 (1990).CrossRefGoogle Scholar
15. Kakihana, M., Yoshimura, M., Mazaki, H. and Yasuoka, H., Report of Res. Lab. of Eng. Materials, Tokyo Inst. of Tech. 17, 63 (1992).Google Scholar
16. Ishida, T. and Mazaki, H., Phys. Rev. B20, 131 (1979).CrossRefGoogle Scholar
17. Mazaki, H., Takano, M., Kanno, R. and Takeda, Y., Japn. J. Appl. Phys. 26, L780 (1987).CrossRefGoogle Scholar
18. Kourtakis, K., Robbins, M., Gallagher, P. K. and Tiefel, T., J. Mater. Res. 4, 1289 (1989).CrossRefGoogle Scholar
19. Murakami, H., Yaegashi, S., Nishio, J., Shiohara, Y. and Tanaka, S., Japn. J. Appl. Phys. 29, L445 (1990).CrossRefGoogle Scholar
20. Jakob, G., Huth, M., Becherer, T., Schmitt, M., Spille, H. and Adrian, H., Physica B, 165&166, 1667(1990).Google Scholar