Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-26T08:20:57.226Z Has data issue: false hasContentIssue false

Synthesis and Surface Modification of Deagglomerated Superparamagnetic Nanoparticles

Published online by Cambridge University Press:  10 February 2011

Christoph Lesniak
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrülcken, Germany
Thomas Schiestel
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrülcken, Germany
Riüdiger Nass
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrülcken, Germany
Helmut Schmidt
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrülcken, Germany
Get access

Abstract

A method for the preparation of aminosilane coated, chemically stable, agglomerate-free superparamagnetic iron oxide nanoparticles (ferrites, e.g. Fe3O4 and γ-Fe2O3) has been developed. These nanocomposite particles posess core-shell structure. The well crystallized core particles are prepared by precipitation from aqueous salt solutions (primary particle size 10 nm). The surface modification of the weakly agglomerated core particles with aminosilane (e.g. γ-aminopropyl- triethoxysilane) leads to deagglomerated particles, covered by a thin polymerized aminosilane shell. A strong dependency of the particle/agglomerate size on the silane/iron oxideratio as well as on the disintegration time was found. A ratio of aminosilane to iron oxide of 0.8 (weight ratio) and a disintegration time of 72h result in overall particle sizes in the range of 10–15 nm. After surface modification, aminogroups are present on the particle surface (IEP of 9.5). The particles show superparamagnetic behaviour (saturation magnetization 68 EMU/g) and aqueous suspensions are stable against agglomeration. A desorption of the coating in aqueous suspensions (pH 3 to 11) is not observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bean, C. P., Livingston, J. D., J.Appl.Phys. 30, 120129, 1959 Google Scholar
[2] Kobayashi, H., Matsunaga, T., J. Coll. Int. Sci. 141(2) 1991 Google Scholar
[3] London et al., U. S. Patent No. 2,870,740Google Scholar
[4] Lawaczeck, R., Kresse, M., Pfefferer, D., P41 17 782.7Google Scholar
[5] Groman, E., Josephson, L., Lewis, J., World Patent WO 88/ 00060 (1988)Google Scholar
[6] Pilgrimim, H., World Patent WO 94/ 21240 (1994)Google Scholar
[7] Schmidt, H. et al., Journal de Physique /IV, Vol.3 (1993) 11, 12511260 Google Scholar
[8] Nass, R., Albayrak, S., Aslan, M., Schmidt, H., adv. Materials in Optics, Electro-optics and communication technologies; ed: Vincenzini-Faenza, P.: Techna 1995, 4754 Google Scholar
[9] Feiock, A., Lesniak, C., Nass, R., Schmidt, H., DKG S.305–307, 8–11.Okt. 1995, AachenGoogle Scholar
[10] Plueddemanin, E. P., Silane coupling agents, Plenum Press, New York 1982 Google Scholar