Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T10:33:52.879Z Has data issue: false hasContentIssue false

Synthesis and Structure of Novel Ternary Manganese Tellurides: MMnTe2 (M = Li, Na), Na3Mn4Te6, and Na3Mn4.7Te6

Published online by Cambridge University Press:  15 February 2011

Chwanchin Wang
Affiliation:
Present address: NEC Research Institute, 4 Independence Way, Princeton NJ08540
Joonyeong Kim
Affiliation:
Department of Chemistry, Texas A&M University, College Station, Texas77843–3255
Timothy Hughbanks
Affiliation:
Department of Chemistry, Texas A&M University, College Station, Texas77843–3255
Get access

Abstract

The synthesis and structure of four ternary manganese tellurides are reported. All the title compounds form layered structures wherein MnTe4 tetrahedra are the fundamental building blocks. In two compounds MMnTe2 (M = Li, Na), MnTe4 tetrahedra share three corners in the formation of [MnTe3/3Te]1− layers, the fourth Te is bound to only one Mn and formally bears a negative charge. MnTe4 tetrahedra share both corners and edges in the formation of [Mn4Te6]3− and [Mn4.7Te6]3− layers in Na3Mn4Te6 and Na3Mn4.7Te6, respectively. Structural relationships between these ternary tellurides and oxides will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hulliger, F., in Structural Chemistry of Layer-type Phases, edited by Levy, F., Physics and Chemistry of Materials with Layered Stmctures (Reidel, Dordrecht, Holland, 1976), vol. 5. Google Scholar
2. Rouxel, J., Bree, R., Ann. Rev. Mater. Sci. 16, 137 (1986).Google Scholar
3. Rouxel, J.. Crystal Chemistry and Properties of Materials with Quasi-one-dimensional Structures (Reidel, Dordrecht, Holland, 1986).Google Scholar
4. Schöllhorn, R., in Progress in Intercalation Research, edited by Miiller-Warmuth, W. and Schöllhorn, R. (Kluwer, Netherlands, 1994).Google Scholar
5. Whittingham, M. S. and Ebert, L. B., Applications of Intercalation Compounds (Reidel, Dordrecht, Holland, 1979).Google Scholar
6. Dismukes, J. P., Smith, R. T., J. Phys. Chem. Solids 32, 913 (1971).Google Scholar
7. Bronger, W., Herudek, C., Huster, J., Schmitz, D., Z Anorg. Alig. Chem 619, 243 (1993).Google Scholar
8. Bronger, W., Ruschewitz, U., Müller, P., J. Alloys and Comp. 218, 22 (1995).Google Scholar
9. Bronger, W., Balk-Hardtdegen, H., Z.Anorg. Alig. Chem. 574, 89 (1989).Google Scholar
10. Bronger, W., Balk-Hardtdegen, H., Schmitz, D., Z.Anorg. Allg. Chem. 574, 99 (1989).Google Scholar
11. Crystal data for NaMnTe2: trigonal, space group P3ml (No. 156), a = 4.5630(6) Å, c = 7.542(2) Å, V = 135.99(6) Å3, Z = 1, Dcalc = 4.068 g cm−3, R = 0.034, Rw = 0.080.Google Scholar
12. Range, K. J., Engert, G., Weiss, A., Naturforsch, Z.. Teil B: Anorg. Chem., Org. Chem. 29B, 186 (1974).Google Scholar
13. Crystal data for Na3Mn4Te6: monoclinic, space group C2/m (No. 12), a = 8.274(4) Å, b = 14.083(6) Å, c = 7.608(6) Å, β = 91.97(4)°, V = 886.0(9) Å3, Z = 2, Dcalc = 3.952 g cm−3, R = 0.077, Rw = 0.1296.Google Scholar
14. Prewitt, C. T., Shannon, R. D., Acta Crystallogr. Sect. B. 24B, 869 (1968).Google Scholar
15. Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Ohio, ed. 2nd., 1991), vol. 1–4.Google Scholar
16. Crystal data for NaMnTe2: trigonal, space group P3 ml (No. 164), a = 4.4973(8) Å, c = 7.638(2) Å, V = 133.77(5) Å3, Z = 1, Dcalc = 4.517 g cm−3, R = 0.044, Rw = 0.060.Google Scholar
17. Klepp, K., Böucher, P., Bronger, W., J.Solid State Chem., 47, 301 (1983).Google Scholar