Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T13:20:34.477Z Has data issue: false hasContentIssue false

Synthesis and Stability of Amorphous Al Alloys

Published online by Cambridge University Press:  17 March 2011

J. H. Perepezko
Affiliation:
Univ. of Wisconsin-Madison, Dept. Mat. Sci. and Eng. 1509 Univ. Ave., Madison WI 53706
R.I. Wu
Affiliation:
Univ. of Wisconsin-Madison, Dept. Mat. Sci. and Eng. 1509 Univ. Ave., Madison WI 53706
R. Hebert
Affiliation:
Univ. of Wisconsin-Madison, Dept. Mat. Sci. and Eng. 1509 Univ. Ave., Madison WI 53706
G. Wilde
Affiliation:
Forschungszentrum Karlsruhe, INT, P.O. Box 3640, D-76021 Karlsruhe, Germany
Get access

Abstract

The recent innovations in metallic glasses have led to new alloy classes that may be vitrified and a re-examination of the commonly used criteria for glass formation and stability. The new alloy classes are usually at least ternary systems and often higher order that can be grouped into two general categories. In one case large, bulk volumes may be slowly cooled to the glassy state which signifies a nucleation controlled synthesis. The other important class is represented by Al and Fe based glasses that can be synthesized only by rapid solidification processes such as melt spinning. These glasses are often called marginal glass formers that are synthesized under growth controlled kinetic conditions. With marginal glass forming alloys the termination of the amorphous state upon heating is often not characterized by a clear glass transition signal, Tg, but instead by the rapid onset of a primary crystallization reaction that represents the partial crystallization into a high number density of nanocrystals of the major component (i.e. Al or Fe) dispersed within a residual amorphous matrix. However, a closer examination by modulated or dynamic differential scanning calorimetry (DDSC) has identified a true reversible Tg signal that confirms the amorphous state and has revealed additional low temperature annealing behavior that impacts the overall thermal stability and microstructure evolution. At the same time alternate synthesis strategies involving deformation alloying by intense cold rolling reveals that the primary crystallization reaction can be bypassed. Alternatively other approaches have demonstrated that by suitable alloying it is possible to innoculate the primary crystallization reaction and increase the density of primary nanocrystals by about an order of magnitude. These developments represent a major level of microstructure control that have an impact on the structural performance and stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Masumoto, T., Mat. Sci. Eng., A179/180, 8 (1994).Google Scholar
2. Inoue, A., Mat. Sci. Forum, 179–181, 691 (1995).Google Scholar
3. Greer, A. L., Science, 267, 1951 (1995).Google Scholar
4. Inoue, A., Prog. Mat. Sci., 43, 365520 (1998).Google Scholar
5. Inoue, A., Zhang, T., and Masumoto, T., Mat. Trans., JIM, 31, 177 (1990).Google Scholar
6. Peker, A. and Johnson, W. L., Appl. Phys. Lett., 63, 2342 (1993).Google Scholar
7. Boettinger, W. J. and Perepezko, J. H., in Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, edited by Liebermann, H. H. (Marcel Dekker Inc. Parsippany, New Jersey, 1993), p. 17.Google Scholar
8. Perepezko, J. H. and Wilde, G., Ber. Bunsenges. Phys. Chem., 102, 1074 (1998).Google Scholar
9. Martin, G., Phys. Rev. B, 30, 1424 (1984).Google Scholar
10. Martin, G., Bellon, P., Soisson, F., Defect Diffus. Forum, 143–147, 385 (1997).Google Scholar
11. Clavaguera-Mora, M. T., Ber. Bunsenges. Phys. Chem., 102, 1291 (1998).Google Scholar
12. Battezzati, L., Baricco, M., Schumacher, P., Shih, W.C., and Greer, A.L., Mat. Sci. and Eng., A179/180, 600 (1994).Google Scholar
13. He, Y., Poon, S. J., and Shiflet, G. J., Scripta Met., 22, 1813 (1988).Google Scholar
14. Allen, D. R., Foley, J. C. and Perepezko, J. H., Acta Mat., 46, 431 (1998).Google Scholar
15. Perepezko, J. H., Mat. Sci. Eng., A226–228, 374 (1997).Google Scholar
16. Foley, J. C., Allen, D. R. and Perepezko, J. H., Mat. Sci. Eng., A226–228, 569 (1997).Google Scholar
17. Foley, J. C., Allen, D. R. and Perepezko, J. H., Scripta Mat., 35, 655 (1996).Google Scholar
18. Chen, L. C. and Spaepen, F., Mat. Sci. Eng., A133, 342 (1991).Google Scholar
19. Johari, G. P., Ram, S., Astl, G., and Mayer, E., J. Non-Cryst. Solids, 116, 2285 (1990).Google Scholar
20. Kim, Y. K., Soh, J. R., Kim, D. K., and Lee, H. M., J. Non-Cryst. Solids, 242, 122 (1998).Google Scholar
21. Reading, M., Elliot, D., and Hill, V. L., J. Thermal Analys., 40, 949 (1993).Google Scholar
22. Schawe, J. E. K., Thermoch. Acta, 260, 1 (1995).Google Scholar
23. Wu, R. I., Wilde, G., Perepezko, J. H., Mat. Sci. Eng., in press.Google Scholar
24. Wilde, G., Wu, R. I., and Perepezko, J. H., Advances in Solid State Phys., in press.Google Scholar
25. Kashchiev, D., Surf. Sci., 14, 109 (1969).Google Scholar
26. Perepezko, J. H. and Wilde, G., J. Non-Crystl. Solids, 274, 271281 (2000).Google Scholar
27. Gangopadhyay, A. K., Croat, T. K., and Kelton, K. F., Acta Mater., 48, 40354043 (2000).Google Scholar
28. Turnbull, D., Prog. Mat. Sci., Chalmers Ann. Vol., Pergamon, 269 (1981).Google Scholar
29. Ediger, M. D., J. Non-Cryst. Solids, 235–237, 10 (1998).Google Scholar
30. Fujita, H., Mat. Trans. JIM, 35, 563 (1994).Google Scholar
31. Hsieh, H. Y., Toby, B. H., Egami, T., He, Y., Poon, S. J., and Shiflet, G. J., J. Mater. Res., 5, 2807 (1990).Google Scholar
32. Tsai, A. P., Kamiyama, T., Kawamura, Y., Inoue, A., and Masumoto, T., Acta Mater., 45, 14771487 (1997).Google Scholar
33. Gremaud, M., Allen, D. R., Rappaz, M., and Perepezko, J. H., Acta Mater., 44, 2669 (1996).Google Scholar
34. Wu, R. I., Dong, Z. F., Perepezko, J. H., to be published.Google Scholar
35. Wilde, G., Sieber, H. and Perepezko, J. H., Script. Mater., 40, 779783 (1999).Google Scholar
36. Bordeaux, F., Yavari, A.R., J. Appl. Phys., 67, 23852389 (1990).Google Scholar
37. Trudeau, M. L., Phys. Rev. Lett., 64, 99102 (1990).Google Scholar
38. Fan, G. J., J. Mater. Res., 14, 37653773 (1999).Google Scholar
39. Egami, T., Mat. Sci. Eng., A226–228, 261267 (1997).Google Scholar