Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-28T10:50:30.759Z Has data issue: false hasContentIssue false

Synthesis And Properties Of Crosslinkable Phenylacetylene Donor-Acceptor Molecules

Published online by Cambridge University Press:  10 February 2011

G. E. Spilman
Affiliation:
Macromolecular Science & Engineering Center
T. Jiang
Affiliation:
Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-2136;
Q. Lu
Affiliation:
Macromolecular Science & Engineering Center
D. C. Martin
Affiliation:
Macromolecular Science & Engineering Center Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-2136;
Get access

Abstract

Based on our previous work using benzocyclobutene (BCB) moieties in extended-chain polymers [1], it was thought that the construction of unsymmetrical molecules around the BCB unit might result in thermally crosslinkable NLO-active materials. The feasibility of incorporating such a functional system in donor-acceptor molecules without disrupting processability is discussed and demonstrated. The synthesis, processing, and characterization of these molecules was investigated by thermogravimetry, differential scanning calorimetry, and optical microscopy using a specially designed hot stage which makes it possible to apply an inplane electric field at elevated temperatures. The ability to rapidly and irreversibly crosslink bulk films without the generation of volatile byproducts provides a novel method for sustaining poled optical properties by locking in the desired orientation. The anisotropy of the electrically poled melt and sustained birefringence after BCB crosslinking and cooling demonstrates the achievement of molecular alignment in these new materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References and Notes

1. For recent examples please see (a)Kirchhoff, R. A., Carriere, C. J., Bruza, K. J., Rondan, N. G.;Sammler, R. L., J. Macromol. Sci., Chem. A28, 10791113 (1991). (b) T. A. Upshaw, J. K. Stille, J. P.Droske, Macromol., 24, 2143 (1991). (c) L. S. Tan, F. E. Arnold, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 32 (1), 636 (1991). (d) H. H. Chuah, L. S.Tan, F. E. Arnold, Polym. Eng. Sci. 29 (2), 107 (1989). (e) L. S. Tan, F. E. Arnold, E. J. Soloski, J. Polym. Sci., Part A: Polym. Chem., 26, 3103 (1988).Google Scholar
2. Miller, R. D., Burland, D. M., Jurich, M., Lee, V. Y., Moylan, C. R., Thackara, J. I., Twieg, R. J., Verbiest, T., and Volksen, W., Macromol. 28, 4970 (1995).Google Scholar
3. Walker, K. A., Markoski, L. J., Moore, J. S., Synthesis, 1992, 1265 (1992).Google Scholar
4. for Compound (1): HRMS: calcd. 409.1790; found 409.1805; 1H NMR (CDCL3) d 7.95 (d, IH), 7.87 (d, 2H), 7.79 (d, 2H), 7.62 (d, 2H), 7.40 (d, IH), 6.79 (d, 2H), 3.90 (s, 3H), 3.39 (d, 2H), 3.31 (d, 2H), 3.09 (s, 6H).Google Scholar
5. a.) Walker, K., Markoski, L. J., Deeter, G. A., Spilman, G. E. and Moore, J. S., Chem. Mat. 5, 248 (1993), b.) K. Walker, L. J. Markoski, G. A. Deeter, G. E. Spilman D. C. Martin and J. S. Moore, Polymer 35, 5012 (1994).Google Scholar
6. a.) U. S. Patent Application, May 1995. b.) Jiang, T., Rigney, J., Jones, M-C. G., Markoski, L. J., Spilman, G. E., Mielewski, D. F., and Martin, D. C., Macromol., 28, 3301 (1995).Google Scholar