Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T15:54:43.644Z Has data issue: false hasContentIssue false

The Synthesis And Optoelectronic Properties Of Oxadiazole-Based Polymers

Published online by Cambridge University Press:  10 February 2011

X.-C. Li
Affiliation:
University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 IEW U.K.
A. Kraft
Affiliation:
University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 IEW U.K.
R. Cervini
Affiliation:
University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 IEW U.K.
G. C. W. Spencer
Affiliation:
University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 IEW U.K.
F. Cacialli
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE U.K.
R. H. Friend
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE U.K.
J. Gruener
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE U.K.
A. B. Holmes
Affiliation:
Melville Laboratory for Polymer Synthesis, University of Cambridge, Pembroke Street, Cambridge CB2 3RA U.K., abhi@cus.cam.ac.uk
J. C. De Mello
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE U.K.
S. C. Moratti
Affiliation:
Melville Laboratory for Polymer Synthesis, University of Cambridge, Pembroke Street, Cambridge CB2 3RA U.K., abhi@cus.cam.ac.uk
Get access

Abstract

New oxadiazole-based polymeric materials have been synthesized either as side chain copolymers with polymethacrylate or as main chain copolymers carrying solubilizing elements such as hexafluoropropylidene or meta-linked aromatic spacer units. Many of these materials exhibit blue luminescence in the solid state. The materials have been evaluated by photoluminescence and cyclic voltammetry studies, and as the electron transporting layer in a two-layer electroluminescent device with poly(p-phenylenevinylene) (PPV) as the emissive layer. The major conclusion is that these materials function by providing large heterojunction offsets at the Highest Occupied Molecular Orbital (HOMO) which block the passage of holes through the device.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hayes, F. N., Rogers, B. S., Ott, D. G., J. Am. Chem. Soc. 77, 1850 (1955).Google Scholar
2. Adachi, C., Tokito, S., Tsutsui, T., Saito, S., Jpn. J. Appl. Phys. 27, L713 (1988).Google Scholar
3. Hamada, Y., Adachi, C., Tsutsui, T., Saito, S., Jpn. J. Appl. Phys. 31, 1812 (1992).Google Scholar
4. Lunak, S. Jr., Nepras, M., Kurfurst, A., Kuthan, J., J. Chem. Phys. 170, 67 (1993).Google Scholar
5. Naito, K., Miura, A., J. Phys. Chem. 97, 6240 (1993).Google Scholar
6. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., MacKay, K., Friend, R.H., Bum, P.L., Holmes, A.B., Nature 347, 539 (1990).Google Scholar
7. Burn, P.L., Holmes, A.B., Kraft, A., Brown, A.R., Bradley, D.D.C., Friend, R.H., in Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, edited by Chiang, L.Y., Garito, A.F., and Sandman, D.J. (Mater. Res. Soc. Proc. 247, Pittsburgh, PA, 1992) pp. 647654.Google Scholar
8. Brown, A.R., Bradley, D.D.C., Bum, P.L., Burroughes, J.H., Friend, R.H., Greenham, N.C., Holmes, A.B., Kraft, A., Appl. Phys. Lett. 61, 2793 (1992).Google Scholar
9. Strukelj, M., Papadimitrakopoulos, F., Miller, T. M., Rothberg, L.J., Science 267, 1969 (1995).Google Scholar
10. Pei, Q., Yang, Y., Adv. Mater. 7, 559 (1995).Google Scholar
11. Pei, Q., Yang, Y., Chem. Mater. 7, 1568 (1995).Google Scholar
12. Yang, Y., Pei, Q., J. Appl. Phys. 77, 4807 (1995).Google Scholar
13. Buchwald, E., Meier, M., Karg, S., Posch, P., Schmidt, H.-W., Strohriegl, P., Riess, W, M.Schwoerer, Adv. Mater. 7, 839 (1995).Google Scholar
14. Li, X-C., Cacialli, F., Giles, M., Grtiner, J., Friend, R. H., Holmes, A. B., Moratti, S. C., Proceedings of the American Chemical Society Division of Polymeric Materials: Science and Engineering 72, 463 (1995).Google Scholar
15. Li, X.-C., Holmes, A.B., Kraft, A., Moratti, S.C., Spencer, G.C.W., Cacialli, F., Grüner, J, Friend, R.H., J. Chem. Soc., Chem. Commun. 2211 (1995).Google Scholar
16. Absolute PL efficiencies were measured with an integrating sphere. See Greenham, N.C., Friend, R. H., D. D. C. Bradley Adv. Mater. 6,491 (1994).Google Scholar
17. Schulz, B., Leibnitz, E., Acta Polymer 43, 343 (1992).Google Scholar
18. Ueda, M., Oda, M., Polym. J. 21, 193 (1989).Google Scholar
19. Dobinson, F., Pelezo, C. A., Black, W. B., Lea, K. R., Saunders, J. H., J. Appl. Polym. Sci. 23, 2189 (1979).Google Scholar
20. Yang, H.H., Aromatic High Strength Fibres (Wiley, New York, vol.3, 1989), p. 290.Google Scholar
21. Janietz, S., Schulz, B., Törrönen, M., Sundholm, G., Eur. Polym. J. 29, 545 (1993).Google Scholar
22. Roh, Y.B., Araki, H., Yoshino, K., Takase, M., Banjyo, T., Jpn. J. Appl. Phys. 33, 1146 (1994).Google Scholar
23. Greenham, N.C., Moratti, S.C., Bradley, D.D.C., Friend, R.H., Holmes, A.B., Nature 365, 628 (1993).Google Scholar
24. Baigent, D.R., Greenham, N.C., Gruner, J., Marks, R.N., Friend, R.H., Moratti, S.C., Holmes, A.B., Synth. Met. 67 (1–3), 3 (1994).Google Scholar
25. Yale, H. L., Losee, K., Martins, J., Holsing, M., Perry, F. M., Bernstein, J., J. Am. Chem. Soc. 75, 1933 (1953).Google Scholar