Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T12:59:37.077Z Has data issue: false hasContentIssue false

Synthesis and Optical properties of Perylene Bisimide Incorporated Low Bandgap Polymers for Photovoltaics

Published online by Cambridge University Press:  31 January 2011

Sivamurugan Vajiravelu
Affiliation:
chmvs@nus.edu.sg, national university of singapore, chemistry, 3 science drive 3, singapore, singapore, 117543, Singapore
suresh valiyaveettil
Affiliation:
chmsv@nus.edu.sg, national university of singapore, chemistry, singapore, Singapore
Get access

Abstract

Herein we report on the synthesis of perylene diimide (PDI) based P1 and P2 conjugated polymers via Suzuki polymerization. The chemical structure of the polymers was elucidated using GPC, 1H, 13C NMR and elemental analysis. The absorption spectra of polymers were in the visible region from 250 – 800 nm in solution and in solid state. The optical band gap was (Egopt) found to be between 1.60 – 1.83 eV in solid state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gunes, S. Neuebauer, H. and Sariciftci, N. S. Chem. Rev. 107, 1324 (2007).Google Scholar
2 Do, J. Y. Kim, B. G. Kwon, J. Y. Shin, W. S. Jin, S. H. and Kim, Y. I. Macromol. Symp. 249-250, 461 (2007).Google Scholar
3 Li, Y. Liu, Y. Wang, N. Li, Y. Liu, H. Lu, F. Zhuang, J. and Zhu, D. Carbon. 43, 1968 (2005).Google Scholar
4 Burquel, A. Lemaur, V. Belijonne, D. Lazzaroni, R. and Cornil, J. J. Phys. Chem. A. 110, 3447 (2006).Google Scholar
5 Yutaka, I. Toshihiko, U. Nobuhiro, Y. and Yoshio, A. Chem. Commun. 1213 (2009).Google Scholar
6 Liu, Y. Yang, C. Li, Y. Li, Y. Wang, S. Zhuang, J. Liu, H. Wang, N. He, X. Li, Y. and Zhu, D. Macromolecules, 38, 716(2005).Google Scholar
7 Zhu, Z. Waller, D. Gaudiana, R. Morana, M. Muhlbacher, D. Scharber, M. and Brabec, C. Macromolecules, 40, 1981 (2007).Google Scholar
8 Yang, R. Tian, R. Yan, J. Zhang, Y. Yang, J. Hou, Q. Yang, W. Zhang, C. and Cao, Y. Macromolecules, 38, 244 (2005).Google Scholar
9 Colladet, K. Fourier, S. Cleij, T. J. Lutsen, L. Gelean, J. Vanderzande, D. Naguyen, L. H. Neugebauer, H. Sariciftci, S. Aguirre, A. Janssen, G. and Goovaerts, E. Macromolecules, 40, 65 (2007).Google Scholar
10 He, X. Liu, H. Wang, N. Ai, X. Wang, S. Li, Y. Huang, C. Cui, S. Li, Y. and Zhu, D. Macromol. Rap. Commun. 26, 721 (2005).Google Scholar
11 Zhan, X. Tan, Z. Domercq, B. An, Z. Zhang, X. Barlow, S. Li, Y. Zhu, D. Kippelen, B. and Marder, S. R. J. Am. Chem. Soc. 129, 7246 (2007).Google Scholar
12 Hou, J. Zhang, S. Chen, T. and Yang, Y. Chem. Commun. 6034 (2008).Google Scholar
13 Hou, L. Zhou, Y. and Li, Y. Macromol. Rapid Commun. 1444 (2008).Google Scholar
14 Sivamurugan, V. Lygaitis, R. Grazulevicius, J. V. Gaidelis, V. Jankauskas, V. and Valiyaveettil, S., J. Mater. Chem. (2009) (DOI: 10.1039/B901847F).Google Scholar
15 Ahrens, M. J. Tauber, M. J. and Wasielewski, M. R. J. Org. Chem. 71, 2107 (2006).Google Scholar
16 Chen, S. Liu, Y. Qiu, W. Sun, X. Ma, Y. and Zhu, D. Chem. Mater. 17, 2208 (2005).Google Scholar