Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T02:47:51.426Z Has data issue: false hasContentIssue false

Synthesis and Cytotoxicity of Luminescent InP Quantum Dots

Published online by Cambridge University Press:  31 January 2011

Yuxuan Wang
Affiliation:
ywang5@binghamton.edu, State University of New York at Binghamton, Binghamton, New York, United States
Chai Hoon Quek
Affiliation:
cq4@duke.edu, Duke University, Durham, North Carolina, United States
Kam W. Leong
Affiliation:
kam.leong@duke.edu, Duke University, Durham, North Carolina, United States
Jiye Fang
Affiliation:
jfang@binghamton.edu, United States
Get access

Abstract

As a potential biological imaging probe with a long-wavelength of emission, InP quantum dots were prepared via a high-temperature organic solution approach, and successfully transferred into an aqueous system through a ligand-exchange process using various functional surfactants. Photoluminescence and X-ray characterizations confirmed the desired properties of the InP quantum dots. The cytotoxicity of the water-soluble InP quantum dots against phaeochromocytoma PC12 cells as evaluated by the MTS cell viability assay was low relative to a positive control, poly(ethyleneimine). This study suggests a bright potential for this new type of InP quantum dots in bioimaging applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bruchez, M. Jr. , Moronne, M. Gin, P. Weiss, S. Alivisatos, A. P. Science 281, 20132016 (1998).Google Scholar
2 Kim, S. Lim, Y. T. Soltesz, E. G. A. M. De Grand, Lee, J. Nakayama, A. Parker, J. A. Mihaljevic, T., Laurence, R. G. Dor, D. M. Cohn, L. H. Bawendi, M. G. Frangioni, J. V. Nat. Biotechnol. 22, 9397 (2004).Google Scholar
3 Michalet, X. Pinaud, F. F. Bentolila, L. A. Tsay, J. M. Doose, S. Li, J. J. Sundaresan, G. Wu, A. M. Gambhir, S. S. Weiss, S. Science 307, 538544 (2005).Google Scholar
4 Colvin, V. L. Schlamp, M. C. Allvisatos, A. P. Nature 370, 354357 (1994).Google Scholar
5 Klimov, V. I. Mikhailovsky, A. A. Xu, S. Malko, A. Hollingsworth, J. A. Leatherdale, C. A., Eisler, H.J. Bawendi, M. G. Science 290, 314317 (2000).Google Scholar
6 Micic, O. I. Sprague, J. R. Curtis, C. J. Jones, K. M. Machol, J. L. Nozik, A. J. Giessen, H., Fluegel, B. Mohs, G. Peyghambarian, N. J. Phys. Chem. 99, 77547759 (1995).Google Scholar
7 Guzelian, A. A. Katari, J. E. B. Kadavanich, A. V. Banin, U. Hamad, K. Juban, E. Alivisatos, A. P., Wolters, R. H. Arnold, C. C. Heath, J. R. J. Phys. Chem. 100, 72127219 (1996).Google Scholar
8 Battaglia, D. Peng, X. Nano Lett. 2, 10271030, (2002).Google Scholar
9 Xu, S. Kumar, S. Nann, T. J. Am. Chem. Soc. 128, 10541055 (2006).Google Scholar
10 Liu, Z. Kumbhar, A. Xu, D. Zhang, J.; Sun, Z. Fang, J. Angew. Chem. Int. Ed. 47, 35403542, (2008).Google Scholar
11 Ahrenkiel, S. P. Micic, O. I. Miedaner, A. Curtis, C. J. Nedeljkovic, J. M. Nozik, A. J. Nano Lett. 3, 833837 (2003).Google Scholar
12 Yong, K. T. Ding, H. Roy, I. Law, W. C. Bergey, E. J. Maitra, A. Prasad, P. N. ACS Nano, 3 (3), 502510 (2009)Google Scholar
13 Xie, R. Battaglia, D. Peng, X. J. Am. Chem. Soc. 129, 1543215433 (2007).Google Scholar
14 Xie, J. Xu, C. Xu, Z. Hou, Y. Young, K. Wang, S. Pourmand, N. Sun, S. Chem. Mater. 18, 54015403 (2006)Google Scholar
15 Wiepz, G. J. Edwin, F. Patel, T. Bertics, P. J. Methods Mol. Biol. 327, 179187 (2006).Google Scholar
16http://www.iss.com/resources/tech3Google Scholar