Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T22:05:12.709Z Has data issue: false hasContentIssue false

Symmetrically Configured AC Light-Emitting (Scale) Devices: Generalizations and Variations

Published online by Cambridge University Press:  10 February 2011

Y. Z. Wang
Affiliation:
Department of Physics, The Ohio State University, Columbus, OH 43210-1106
D. D. Gebler
Affiliation:
Department of Physics, The Ohio State University, Columbus, OH 43210-1106
A. J. Epstein
Affiliation:
Department of Physics, The Ohio State University, Columbus, OH 43210-1106
H. L. Wang
Affiliation:
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
T. M. Swager
Affiliation:
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
A. G. Macdiarmid
Affiliation:
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
Get access

Abstract

Most conjugated polymer-based light-emitting devices have been shown to be tunnel diodes which can only operate under forward DC driving field. Recently we have reported the fabrication of symmetrically configured AC light-emitting (SCALE) devices based on heterocyclic aromatic conjugated polymers. By adding an “insulating” layer (e.g. emeraldine base (EB) form of polyaniline) on both sides of the emitting layer, the SCALE devices emit light under both forward and reverse DC bias as well as AC driving voltage. The SCALE device structure ITO/J/emitterFl/M, has been shown to be quite general, and can be applied to a variety of electroluminescent polymers (emitter), insulating polymers (I) and electrode materials (M). Here we summarize and compare the performance of SCALE devices fabricated with different emitter, insulator, and electrode materials. The role of the insulating layer in the SCALE device operation is examined and a model that emphasizing the interface states is proposed to account for the device operation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parker, I. D., J. Appl. Phys. 75, 1656 (1994).Google Scholar
2. Garten, F., Schlatmann, A. R., Gill, R. E., Vrijmoeth, J., Klapwijk, T. M., and Hadziioannou, G., Appl. Phys. Lett. 66, 2540 (1995).Google Scholar
3. Jeglinski, S. A., Hollier, M. E., Gold, J., Vardeny, Z. V., Ding, Y. and Barton, T., Mol. Cryst. Liq. Cryst. 256, 555 (1994).Google Scholar
4. Yang, Z., Hu, B., and Karasz, F. E., Macromolecules, in press (1995).Google Scholar
5. Fou, A. C., Onitsuka, O., Ferreira, M., Howie, D., and Rubner, M. F., Polymeric Materials Science and Engineering 72, 160 (1995).Google Scholar
6. (a) Wang, Y. Z., Gebler, D. D., Lin, L. B., Blatchford, J. W., Jessen, S. W., Wang, H. L., and Epstein, A. J., to be published; (b) Y. Z. Wang, D. D. Gebler, J. W. Blatchford, S. W. Jessen, L. B. Lin, T. L. Gustafson, H. -L.Wang, Y. W. Park, T. M. Swager, A. G. MacDiarmid, and A. J. Epstein, SPIE Proceedings 2528, 54 (1995).Google Scholar
7. Tamamoto, T., Ito, T., and Kubota, K., Chem. Lett., 153 (1988).Google Scholar
8. MacDiarmid, A. G. and Epstein, A. J., Faraday Discuss. Chem. Soc. 88, 317 (1989).Google Scholar
9. Fu, D. K., Xu, B., Marsella, M., and Swager, T. M., Polymer Preprints 36, 585 (1995).Google Scholar
10. Bradley, D. D. C., Synth. Met 54, 401 (1993).Google Scholar
11. Henisch, H. K., Semiconductor Contacts: An Approach to Ideas and Models, Oxford University Press, Oxford (1984).Google Scholar
12. Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, Oxford University Press, Oxford (1988).Google Scholar
13. MacDiarmid, A. G., Wang, H. L., Park, J. W., Fu, D. K., Marsella, M. J., Swager, T. M., Wang, Y. Z., Gebler, D. D., and Epstein, A. J., Proc. of SPIE, in press (1995); H. L. Wang, J. W. Park, D. K. Fu, M. J. Marsella, T. M. Swager, A. G. MacDiarmid, Y. Z. Wang, D. D. Gebler, and A. J. Epstein, Polymer Preprints, in press, (1995).Google Scholar
14. Yang, Y., Westerweele, E., Zhang, C., Smith, P., and Heeger, A. J., J. Appl. Phys. 77, 694 (1995).Google Scholar