Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T06:54:16.421Z Has data issue: false hasContentIssue false

Surface Roughness and Surface-Induced Resistivity of Thin Gold Films On Mica

Published online by Cambridge University Press:  17 March 2011

Raúl C. Munoz*
Affiliation:
Departamento de Física
German Kremer
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Chile Las Palmeras 3425. Santiago, Chile
Luis Moraga
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Chile Las Palmeras 3425. Santiago, Chile
Guillermo Vidal
Affiliation:
Departamento de Ingeniería Eléctrica Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile Blanco Encalada 2008. Casilla 487-3. Santiago 6511226, Chile.
Claudio Arenas
Affiliation:
Departamento de Ingeniería Eléctrica Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile Blanco Encalada 2008. Casilla 487-3. Santiago 6511226, Chile.
*
#corresponding author: Departamento de Física. Facultad de Ciencias Físicas y Matemáticas. Universidad de Chile. Blanco Encalada 2008. Casilla 487-3. Santiago 6511226, Chile. email: RAMUNOZ@CEC.UCHILE.CL. Telephone: 56-2-696-0148; FAX: 56-2-696-7359.
Get access

Abstract

Abstract. We report measurements of the surface topography of a 70 nm gold film deposited on mica preheated to 300 oC in UHV performed with a Scanning Tunneling Microscope (STM). From these measurements we determine the rms roughness amplitude and the lateral correlation length characterizing the average height-height autocorrelation function on a nanometric scale.We also report a method of analyzing thin film resistivity data that departs sharply from the traditional method of parameter fitting. This method allows the determination of the resistivity and mean free path characterizing the bulk from the measured thin film resistivity by means of a new iteration procedure, that uses as input data the roughness parameters experimentally determined with the STM and any of the available quantum transport theories, without adjustable parameters. We examine the resistivity data reported by Sambles et al. [Philos. Trans. R. Soc. London, Ser. A304, 365 (1982)] for gold films deposited on mica under similar substrate temperature and similar speed of evaporation. The remarkable outcome is that any of the quantum transport theories available, describe approximately both the temperature as well as the thickness dependence of the resistivity data without any adjustable parameter. Another surprise is that the parameters characterizing the bulk—assumed to be independent of thickness for many years—turn out to be thickness dependent.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sondheimer, E. H., Advances in Physics 1, 1 (1952).Google Scholar
2. Munoz, R. C., Vidal, G., Kremer, G., Moraga, L., Arenas, C., J. Phys.: Condens. Matter 11, L299 (1999).Google Scholar
3. Munoz, R. C., Vidal, G., Kremer, G., Moraga, L., Arenas, C. and Concha, A., J. Phys.: Condens. Matter 12, 2903 (2000).Google Scholar
4. Munoz, R. C., Arenas, C., Kremer, G. and Moraga, L., J. Phys.: Condens. Matter 12, L379 (2000).Google Scholar
5. Munoz, R. C., Concha, A., Mora, F., Espejo, R., Vidal, G., Mulsow, M., Arenas, C., Kremer, G., Moraga, L., Esparza, R. and Haberle, P., Phys. Rev. B61, 4514 (2000).Google Scholar
6. Munoz, R. C., Vidal, G., Mulsow, M., Lisoni, J. G., Arenas, C., Concha, A., Mora, F., Espejo, R., Kremer, G., Moraga, L., Esparza, R. and Haberle, P., Phys. Rev. B62, 4686 (2000).Google Scholar
7. Matula, R. A., J. Phys. Chem. Ref. Data 8, 1147 (1979).Google Scholar
8. Sambles, J. R., Elsom, K. C. and Jarvis, D. J., Philos. Trans. R. Soc. London Ser. A 304, 365 (1982).Google Scholar
9. Tesanovic, Z., Jaric, M. V. and Maekawa, S., Phys. Rev. Lett. 57 2760 (1986).Google Scholar
10. Trivedi, N. and Aschroft, N. W., Phys. Rev. B38, 12298 (1988).Google Scholar