Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-18T06:40:13.840Z Has data issue: false hasContentIssue false

Surface Enhanced Magneto-Optics in Noble Metal / Ferromagnetic Metal Multilayers

Published online by Cambridge University Press:  15 February 2011

V. I. Safarov
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau Cedex, France
V. A. Kosobukin
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau Cedex, France
C. Hermann
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau Cedex, France
G. Lampel
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau Cedex, France
J. Peretti
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau Cedex, France
C. MarliÉre
Affiliation:
Institut d'Optique Théorique et Appliquée, Centre Universitaire, Bât. 503, 91403 Orsay Cedex, France
Get access

Abstract

We present an electromagnetic enhancement mechanism for the magneto-optical response of noble metal / ferromagnetic metal multilayer thin films. When such a structure is illuminated in total reflection condition, the resonant coupling of light with the noble metal surface plasmons gives rise to an amplification of the magneto-optically induced component of the light electric field. The experimental results obtained on a 30nm-thick Au / Co / Au model system show that this resonant feature observed in the Kerr rotation and ellipticity corresponds to a strong enhancement of the magneto-optical figure of merit and signal-to-noise ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reim, W. and Weller, D., IEEE Trans. Magnet. 25, 3752 (1989).Google Scholar
2. Kryder, M. H., Annu Rev. Mater. Sci. 23, 411 1993; J. Ferré, in Magnetism. Magnetic Materials and their Applications. eds. F. Leccabue and J. L. Sanchez Llamazares (IOP Publishing, Bristol, 1992), p. 167.Google Scholar
3.See for instance, Ferré, J., Pénissard, G., Marlière, C., Renard, D., Beauvillain, P., and Renard, J. P., Appl. Phys. Lett. 56, 1588 (1990).Google Scholar
4. Safarov, V. I., Kosoboukin, V. A., Hermann, C., Lampel, G., Peretti, J. and Marlière, C., Phys. Rev. Lett. 73, 3584 (1994).Google Scholar
5.See for instance, Raether, H., Surface Plasmons, in Springer Tracts in Modern Physics, vol. 11 (Springer Verlag, Berlin, 1988).Google Scholar
6. Marlière, C., Renard, D., and Chauvineau, J. P., Thin Solids Films 201, 317 (1991); and references therein.Google Scholar
7. Metzger, G., Pluvinage, P., and Torguet, R., Ann. Phys. 10, 5 (1965).Google Scholar
8.We have developped two theoretical approaches for describing the MO properties of metallic magnetic multilayer thin films. These treatments will be published elsewhere. Both show the same agreement with our experimental results. The first one is a MO generalization of the following work: Kosobukin, V. A., Zh. Tekh. Fiz. 56, 1481 (1986) [Sov. Phys. Tech. Phys. 31, 879 (1986)]. The second, after which are obtained the analytical expressions of the reflection coefficients pPs and pSP presented here, may be related to the following works: J. Zak, E. R. Moog, C. Liu, and S. D. Bader, J. Mag. Mag. Mat. 89, 107 (1990); V. M. Agranovich, in Surface Polaritons ed. by V. M. Agranovich and D. L. Mills (North Holland, Amsterdam, 1982), p. 187.Google Scholar
9.beyond the total reflection limit, the reflection and transmission coefficients are here formally defined by the same expressions than those generally used for propagating waves.Google Scholar
10. Safarov, V. I., Kosoboukin, V. A., Hermann, C., Lampel, G., Peretti, J., and Marlière, C. (unpublished).Google Scholar