Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T01:46:14.559Z Has data issue: false hasContentIssue false

Superplasticity and Joining of Zirconia-Based Ceramics

Published online by Cambridge University Press:  10 February 2011

F. Gutierrez-Mora
Affiliation:
Dpto. de Física de la Materia Condensada, Universidad de Sevilla, 41080 Sevilla, Spain
A. Dominguez-Rodriguez
Affiliation:
Dpto. de Física de la Materia Condensada, Universidad de Sevilla, 41080 Sevilla, Spain
M. Jimenez-Melendo
Affiliation:
Dpto. de Física de la Materia Condensada, Universidad de Sevilla, 41080 Sevilla, Spain
R. Chaim
Affiliation:
Dept. of Materials Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
G. B. Ravi
Affiliation:
Dept. of Materials Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
J. L. Routbort
Affiliation:
Energy Technology Division, Argonne National Laboratory
Get access

Abstract

Steady-state creep and joining of alumina/zirconia composites containing alumina volume fractions of 20, 60, and 85% have been investigated between 1250 and 1350°C. Superplasticity of these compounds is controlled by grain-boundary sliding and the creep rate is a function of alumina volume fraction, not grain size. Using the principles of superplasticity, pieces of the composite have been joined by applying the stress required to achieve 5 to 10% strain to form a strong interface at temperatures as low as 1200°C

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, I.W. and Xue, L. A. J. Am. Ceram. Soc., 73, p. 2585 (1990)10.1111/j.1151-2916.1990.tb06734.xGoogle Scholar
2. Cannon, W. R. in Advances in Ceramics, Vol 10 Structure and Properties of MgO and A1203 Ceramics. Edited by Kingery, W.D.. Am. Ceram. Soc. Columbus OH. 1984. p. 741–49.Google Scholar
3. Cannon, W. R. and Langdon, T. G., J. Mater. Sci, 18, p. 1 (1983). Ibidem, 23, p. 1 (1998).10.1007/BF00543808Google Scholar
4. Sakuma, T., Ikuhara, Y., Takigawa, Y. and Thavorniti, P., Mat. Sci. Eng. A234–236, p. 226 (1997).10.1016/S0921-5093(97)00219-0Google Scholar
5. Yoshida, H., Okada, K., Ikuhara, Y. and Sakuma, T.. Phil. Mag. Let. 76, p. 9 (1997).10.1080/095008397179327Google Scholar
6. Wakai, F., Nagano, T. and Iga, T.. J. Am. Ceram. Soc. 80, p. 2361 (1997)10.1111/j.1151-2916.1997.tb03128.xGoogle Scholar
7. Clarisse, L., Baddi, R., Bataille, A., Crampon, J., Duclos, R. and Vincens, J.. Acta Mater. 45, p. 3843 (1997).10.1016/S1359-6454(97)89771-6Google Scholar
8. Ye, J. and Dominguez-Rodriguez, A., Scripta Met. and Mater. 33, p. 441 (1995).10.1016/0956-716X(95)00206-BGoogle Scholar
9. Dominguez-Rodriguez, A., Guiberteau, F. and Jimenez-Melendo, M.. J. Mat. Res. 13, p. 1631 (1998).10.1557/JMR.1998.0224Google Scholar
10. Dominguez-Rodriguez, A., Jimenez-Pique, E. and Jimenez-Melendo, M.. Scripta Mater. 39, p. 21, (1998).10.1016/S1359-6462(98)00115-8Google Scholar
11. Jimenez-Melendo, M., Clauss, C., Dominguez-Rodriguez, A., Portu, G. De, Roncari, E. and Pinasco, P., Acta Mater. 46, p. 3995 (1998).10.1016/S1359-6454(98)00066-4Google Scholar
12. Jimenez-Melendo, M., Clauss, C., Dominguez-Rodriguez, A., Sanchez-Herencia, A. J., and Moya, J. S., J. Am. Ceram. Soc. 80, p. 2126 (1997).10.1111/j.1151-2916.1997.tb03097.xGoogle Scholar
13. Hare'l, G., Ravi, B. G., and Chaim, R., Mater. Lett. 39, p. 63 (1999).10.1016/S0167-577X(98)00218-3Google Scholar
14. Jimenez-Melendo, M., Dominguez-Rodriguez, A. and Bravo-Leon, A.. J. Am. Ceram. Soc. 81, p. 2761 (1998)10.1111/j.1151-2916.1998.tb02695.xGoogle Scholar
15. Chokshi, A. H., Mat. Sci. Eng. A166, p.119 (1993).10.1016/0921-5093(93)90316-7Google Scholar
16. Jimenez-Melendo, M. and Dominguez-Rodriguez, A., Phil. Mag. A, 79, p. 1591 (1999).10.1080/01418619908210381Google Scholar