Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-24T18:24:01.624Z Has data issue: false hasContentIssue false

Sucker Rings from the Humboldt Squid Dosidicus gigas: The Role of Nanotubule Architecture on the Mechanical Properties

Published online by Cambridge University Press:  31 January 2011

Ali Miserez
Affiliation:
alimiserez@gmail.com, University of California, Santa Barbara, Materials Department and Marine Science Institute, Santa Barbara, California, United States
James Weaver
Affiliation:
jweaver@engr.ucr.edu, University of California, Riverside, Department of Chemical and Environmental Engineering, Riverside, California, United States
David Kisailus
Affiliation:
david@engr.ucr.edu, University of California, Riverside, Department of Chemical and Environmental Engineering, Riverside, California, United States
Henrik Birkedal
Affiliation:
hbirkedal@chem.au.dk, Aarhus University, Department of Chemistry & Interdisciplinary Nanoscience Center, Århus, Denmark
Get access

Abstract

The suckers that line the arms and tentacles of squid are equipped with rigid toothed ring-like elements that increase the gripping power during prey capture and handling. The sucker rings of the Humboldt squid Dosidicus gigas, are fully proteinaceous and contain nanotubules with diameters ranging from 100 to 250 nm. It has been shown previously that the ensuing porosity is a prime determinant of the local elastic modulus [A. Miserez et al., Adv. Mater. <b>21</b>, 401 (2009)]. Here additional nanoindentation data are presented together with structural analyses. The nanomechanical data support our model that the measured modulus is determined by the local porosity. The dry moduli reach ca. 8 GPa and are reduced about two-fold in the hydrated state. This surprisingly small reduction is discussed in relation to possible chemistries responsible for assembly of these structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kier, W. M., and Smith, K. K., J. Linnean Soc. 83, 307 (1985).10.1111/j.1096-3642.1985.tb01178.xGoogle Scholar
2 Kier, W. M., and Smith, A. M., Integr. Comp. Biol. 42, 1156 (2002).10.1093/icb/42.6.1146Google Scholar
3 Miserez, A., Weaver, J. C., Pedersen, P. B., Schneeberk, T., Hanlon, R. T., Kisailus, D., and Birkedal, H., Adv. Mater. 21, 401 (2009).10.1002/adma.200801197Google Scholar
4 Moses, D. N., Mattoni, M., Slack, N. L., Waite, H., and Zok, F., Acta Biomat. 2, 521 (2006).10.1016/j.actbio.2006.05.002Google Scholar
5 Mermut, O., Lefebvre, J., Gray, D. G., and Barret, C. J., Macromolecules 36, 8819 (2003).10.1021/ma034967+Google Scholar
6 Pavoor, P. V., Bellare, A., Strom, A., Yang, D.., and Cohen, R. E., Macromolecules 37, 4865 (2004).10.1021/ma049777tGoogle Scholar
7 Birkedal, H., Khan, R. K., Slack, N., Broomell, C., Lichtenegger, H. C., Zok, F., Stucky, G. D., and Waite, J. H., ChemBioChem 7, 1392 (2006).10.1002/cbic.200600160Google Scholar
8 Waite, J. H., Tanzer, M. L. in CRC Handbook of Biochemistry in Aging edited by Florini, J. R., (CRC Press, Boca Raton, FL, 1981) pp. 195219.Google Scholar
9 Andersen, S. A., Hojrup, P, and Roepstorff, P., Insect Biochem. Mol. Biol. 25, 153 (1995).10.1016/0965-1748(94)00052-JGoogle Scholar
10 Kramer, K. J., Kanost, M. R., Hopkins, T. L., Jiang, H., Zhu, Y. C., Xu, R., Kerwin, J. L., and Turecek, F., Tetrahedron 57, 385 (2002)10.1016/S0040-4020(00)00949-2Google Scholar
11 Singh, M., Berkland, C., and Detamore, M., Tissue Engineering: Part B 14, 341 (2008)10.1089/ten.teb.2008.0304Google Scholar