Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-07T11:58:37.163Z Has data issue: false hasContentIssue false

Substitution Behavior of Ni3X-type Compounds with D0a Structure

Published online by Cambridge University Press:  15 March 2011

H. Sugimura
Affiliation:
Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
Y. Kaneno
Affiliation:
Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
T. Takasugi
Affiliation:
Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
Get access

Abstract

The site preference of ternary additions in GCP (geometrically close-packed) Ni3X-type compounds with D0a structure was determined from the direction of the single-phase region of the D0a phase in the reported ternary phase diagrams. The thermodynamic model based on the Bragg-Williams approximation, which is based on the change in heat of formation of the host compound by a small addition of ternary solute, was applied to predict the site preference of ternary additions. The heat of formation used in the thermodynamic calculation was derived from Miedema’s formula. Good agreement was obtained between the thermodynamic model and the result of the literature search.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Van Vucht, J.H.N., J. Less-Common Met. 11, 308 (1966).Google Scholar
2. Sinha, A.K., Trans. Metall. Soc. AIME 245, 911 (1969).Google Scholar
3. Niessen, A.K., Miedema, A.R., de Boer, F.R., and Boom, R., Physica B 152 303 (1988).Google Scholar
4. Quinn, R.T., Kraft, R.W. and Hertzberg, R.W., Trans. Am. Soc. Met. 62, 38 (1969).Google Scholar
5. Nunomura, Y., Kaneno, Y., Tsuda, H. and Takasugi, T., Intermetallics 12, 389 (2004).Google Scholar
6. Ohira, K., Kaneno, Y. and Takasugi, T., Mater. Sci. Eng., A 399, 332 (2005).Google Scholar
7. Ohira, K., Kaneno, Y., Tsuda, H. and Takasugi, T., Intermetallics 14, 367 (2006).Google Scholar
8. Nunomura, Y., Kaneno, Y., Tsuda, H. and Takasugi, T., Acta Mater. 54, 851 (2006).Google Scholar
9. Shibuya, S., Kaneno, Y., Yoshida, M., Shishido, T. and Takasugi, T., Intermetallics 15, 119 (2007).Google Scholar
10. Shibuya, S., Kaneno, Y., Tsuda, H. and Takasugi, T., Intermetallics 15, 338 (2007).Google Scholar
11. Ochiai, S., Oya, Y. and Suzuki, T., Acta Metall. 32, 289 (1984).Google Scholar
12. Miedema, A.R., Boom, R. and de Boer, F.R., Crystal Structure and Chemical Bonding in Inorganic Chemistry, ed. Rooymans, C.J.M. and Rabenau, A., (North-Holland/American Elsevier, 1975) p.163.Google Scholar
13. Miedema, A.R. and du Chatel, P.F., Theory of Alloy Phase Formation, edited by Bennet, L.H., (Metall. Soc. A.I.M.E, 1980) p.334.Google Scholar
14. Liu, Y., Takasugi, T. and Izumi, O., Metall. Trans. A 17, 1433 (1986).Google Scholar
15. Sugimura, H., Kaneno, Y. and Takasugi, T., Mater. Trans., JIM 51, 72 (2010).Google Scholar
16. Sugimura, H., Kaneno, Y. and Takasugi, T., J. Alloys Compd. 496, 116 (2010).Google Scholar
17. Sugimura, H., Kaneno, Y. and Takasugi, T., Mater. Sci. Forum, 654-656, 440 (2010).Google Scholar
18. Flinn, P.A., Trans. Met. Soc. AIME, 218, 145 (1960)Google Scholar
19. Panteleimonov, L.A., Burtseva, O.G. and Zubenko, V.V., Moscow Univ. Chem. Bull. 37 (1), 71 (1982).Google Scholar
20. Gupta, K.P., Rajendraprasad, S.B. and Jena, A.K., J. Alloy Phase Diagrams 6, 14 (1990).Google Scholar
21. Kodentsov, A.A., Dunaev, S.F., Slyusarenko, E.M. and Sokolovskaya, E.M., Moscow Univ. Chem. Bull. 41 (3), 58 (1986).Google Scholar
22. Gupta, K.P., Phase Diagrams Ternary Nickel Alloys, Trans. Indian Inst. Met. 1, 49 (1990).Google Scholar
23. Svechnikov, V.N. and Pan, V.M., Dopov. Akad. Nauk. Ukr. RSR. 634, (1960).Google Scholar
24. Kodentsov, A.A., Dunaev, S.F. and Slyusarenko, E.M., Moscow Univ. Chem. Bull. 43 (3), 90 (1988).Google Scholar
25. Raghavan, V., Indian Inst. Met. 6B, 1025 (1992).Google Scholar
26. Gupta, K.P., Indian Inst. Met. 2, 163 (1991).Google Scholar
27. Pryakhina, L.I., Myasnikova, K.P., Burnasheva, V.V., Cherkashin, E.E. and Markiv, V.Y., Powder Metall. Met. Ceram. 5, 643 (1966).Google Scholar
28. Gupta, K.P., Indian Inst. Met. 2, 177 (1991).Google Scholar
29. Gupta, K.P., Indian Inst. Met. 2, 185 (1991).Google Scholar
30. Tikhankin, G.A., Meshkov, L.L. and Sokolovskaya, E.M., Moscow Univ. Chem. Bull. 31 (1), 88 (1976).Google Scholar
31. Nash, P., West, D.R.F., Met. Sci. 13, 670 (1979).Google Scholar
32. Kaufman, L., Calphad 15, 261 (1991).Google Scholar
33. Zakharov, A., Aluminium-Nickel-Tantalum, Vol. 7 (Ternary Alloys, VCH, 1993) p.483.Google Scholar
34. Hong, Y.M., Mishima, Y. and Suzuki, T., Mater. Res. Soc. Symp. Proc. 133, 429 (1989).Google Scholar
35. Willemin, P., Dugué, O., Durand Charre, M. and Davidson, J.H., Mater. Sci. Technol. 2, 344 (1986).Google Scholar
36. Nesterenko, S.N., Osipov, A.K., Meshkov, L.L. and Sokolovskaya, E.M., Moscow Univ. Chem. Bull. 35(3), 64 (1980).Google Scholar
37. Schittny, S.U., Lugscheider, E. and Knotek, O., Thermochim. Acta 85, 167 (1985).Google Scholar
38. Gupta, K.P., Trans. Indian Inst. Met. (1), 219 (1990).Google Scholar
39. Uskova, E.N. and Meshkov, L.L., Moscow Univ. Chem. Bull. 46(4), 81 (1991).Google Scholar
40. Bernard, V.B., Kuprina, V.V. and Burnasheva, V.V., Moscow Univ. Chem. Bull. 28(3), 71 (1973).Google Scholar
41. Slyusarenko, E.M., Peristyi, A.V., Kerimov, E.Y., Guzei, I.L. and Sofin, M.V., J. Alloys Compd. 256, 115 (1997).Google Scholar
42. Gupta, K.P., Indian Inst. Met. (2), 92 (1991).Google Scholar
43. Chakravorty, S. and West, D.R.F., Met. Sci. 17, 573 (1983).Google Scholar
44. Gupta, K.P., Indian Inst. Met. (2), 152 (1991).Google Scholar
45. Kornilov, I.I. and Pylaeva, E.N., Zh. Neorg. Khim. 1, 308 (1956).Google Scholar
46. Slyusarenko, E.M., Peristyi, A.V., Kerimov, E.Y., Sofin, M.V. and Skorbov, D.Y., J. Alloys Compd. 264, 180 (1998).Google Scholar
47. Ametov, I.V., Dunaev, S.F., Slyusarenko, E.M. and Peristyi, A.V., Moscow Univ. Chem. Bull. 45(1), 50 (1990).Google Scholar
48. Maslenkov, S.B., Burova, N.N. and Rodimkina, V.A., Russ. Metall. (6), 179 (1988).Google Scholar
49. Markiv, V.Y., Burnasheva, V.V., Pryakhina, L.I. and Myasnikova, K.P., Russ. Metall. (5), 117 (1969).Google Scholar
50. Kubaschewski, O., Aluminium-Molybdenum-Nickel, (Ternary Alloys, VCH 7, Germany, 1993) p. 199.Google Scholar
51. Turchi, P.E.A., Kaufman, L. and Liu, Z.K., Calphad. 30, 70 (2006).Google Scholar
52. Eremenko, V.N., Tret’yachenko, L.A., Prima, S.B. and Semenova, E.L., Powder Metall. Met. Ceram. 23, 613 (1984).Google Scholar
53. Gupta, K.P., Indian Inst. Met. (2), 108 (1991).Google Scholar
54. Meshkov, L.L., Nesterenko, S.N. and Ishchenko, T.V., Russ. Metall. (2), 204 (1985).Google Scholar
55. Gupta, K.P., Indian Inst. Met. (2), 134 (1991).Google Scholar
56. Kaufman, L. and Nesor, H., Metall. Trans. 5, 1617 (1974).Google Scholar
57. Virkar, A.V., Raman, A., Z. Metallkd. 60, 594 (1969).Google Scholar
58. Gupta, K.P., Indian Inst. Met. (2), 83 (1991).Google Scholar
59. Prime, S.B., Petyukh, V.M., Dan'ko, I.V. and Vyssh, Izv.. Zaved, Uchebn.., Tsvetn. Met. (Moscow) (3), 86 (1991).Google Scholar
60. Raevskaya, M.V., Lashuk, E.P., Kazakova, E.F. and Sokolova, I.G., J. Less-Common Met. 99, L15 (1984).Google Scholar