Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T16:34:46.158Z Has data issue: false hasContentIssue false

Subpicosecond Time-Resolved Raman Studies of Nonequilibrium Excitations in Wurtzite GaN

Published online by Cambridge University Press:  10 February 2011

K. T. Tsen
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287
R. P. Joshi
Affiliation:
Department of Electrical Engineering, Odl Dominion University, Norfolk, VA 23529
D. K. Ferry
Affiliation:
Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287
A. Botchkarev
Affiliation:
Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801
B. Sverdlov
Affiliation:
Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801
A. Salvador
Affiliation:
Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801
H. Morkoc
Affiliation:
Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801
Get access

Abstract

Non-equilibrium electron distributions as well as phonon dynamics in wurtzite GaN have been measured by subpicosecond time-resolved Raman spectroscopy. Our experimental results have demonstrated that for electron densities n ≥ 5 × l017cm−3, the non-equilibrium electron distributions in wurtzite GaN can be very well described by Fermi-Dirac distribution functions with the temperature of electrons substantially higher than that of the lattice. The population relaxation time of longitudinal optical phonons was directly measured to be τ ≅ 5 ± 1 ps at T = 25 K. The experimental results on the temperature dependence of the lifetime of longitudinal optical phonons suggest that the primary decay channels for these phonons are the decay into (1) one transverse optical phonon and one high energy, longitudinal or transverse acoustical phonons; and (2) one transverse optical phonon and one E2 phonon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a revew, see Morkoc, H., Suite, S., Gao, G.B., Lin, M.E., Sverdlov, B. and Burns, M., J. Appl. Phys. Rev. Vol. 76, No. 3, 1363 (1994).Google Scholar
2. Kim, D.S. and Yu, P.Y. in “Light Scattering in Semiconductor Structures and Superlattices”, edited by Lockwood, D.J. and Young, J.F. (plenum Press, New York, 1991), p.383.Google Scholar
3. Klein, M.V., in “Light Scattering in Solids I”, edited by Cardona, M. and Guntherodt, G., Topics in Appl. Phys. Vol. 8 (Springer, New York, 1983), p.151.Google Scholar
4. Abstreiter, G., Cardona, M., and Pinczuk, A., in “Light Scattering in Solids III”, edited by Cardona, M. and Guntherodt, G., Topics in Appl. Phys. Vol. 51 (Springer, New York, 1983), p.5.Google Scholar
5. Hamilton, D.C. and McWhorter, A.L, in “Light Scattering Spectra of Solids“, edited by Wright, G.B. (Springer, New York, 1969), p. 309.Google Scholar
6. Chia, C., Sankey, O.F. and Tsen, K.T., Modem Phys. Lett. B7, 331 (1993).Google Scholar
7. Pinczuk, A., Abstreiter, G.A., Trommer, R. and Cardona, M., Solid State Commun. 30, 429 (1979).Google Scholar
8. Azuhata, T., Sota, T., Suzuki, K., Nakamura, S., J. of Phys. Condensed Matter 7, LI29 (1995).Google Scholar
9. Tsen, K.T., Wald, K.R., Ruf, T., Yu, P.Y. and Morkoc, H., Phys. Rev. Lett. 67, 2557 (1991).Google Scholar
10. Tsen, K.T.. Joshi, R.P. Ferry, D.K. and Morkoc, H., Phys. Rev. B39, 1446 (1989).Google Scholar
11. Kash, J.A., Tsang, J.C. and Hvam, J.M., Phys. Rev. Lett. 54, 2151 (1985).Google Scholar
12. Tsen, K.T. and Morkoc, H., Phys. Rev. B38, 5615 (1988).Google Scholar
13. Joshi, R.P., J. Appl. Phys. 74, 4434 (1994); R.P. Joshi, A.N. Dharamsi and J. Mcadoo, Appl. Phys. Lett. 64, 3611 (1994).Google Scholar
14. Klemens, P.G., Phys. Rev. 148, 845 (1966).Google Scholar