Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T23:16:23.621Z Has data issue: false hasContentIssue false

Sub-100 nm Patterning of Aluminum Film by AFM Local Oxidation

Published online by Cambridge University Press:  17 March 2011

Andrea Notargiacomo
Affiliation:
Unitá INFM, Dipartimento di Fisica E. Amaldi, Universitá di Roma TRE, Via della Vasca Navale 84, 00146 Roma, Italy
Vittorio Foglietti
Affiliation:
Istituto di Elettronica dello Stato Solido (IESS) - CNR, Via Cineto Romano 42, 00156 Roma, Italy
Florestano Evangelisti
Affiliation:
Unitá INFM, Dipartimento di Fisica E. Amaldi, Universitá di Roma TRE, Via della Vasca Navale 84, 00146 Roma, Italy Istituto di Elettronica dello Stato Solido (IESS) - CNR, Via Cineto Romano 42, 00156 Roma, Italy
Get access

Abstract

We have investigated the local oxidation of an aluminum film to fabricate aluminum and aluminum oxide masks on Si and SiGe substrates. The local oxidation is made by negatively biasing the probe of an atomic force microscope operating in contact mode. The masks are defined by removing the unwanted material using highly selective etching solutions at room temperature. The produced aluminum-based masks can withstand reactive ion etching processes using fluorinated gases mixtures. We report examples of sub-100 nm pattern transfer on the substrate using the AFM fabricated masks. Preliminary observations suggest to use the sputtered aluminum films for which the anodization is found more efficient than for e-beam evaporated aluminum.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meirav, U. and Foxman, E. B., Semicond. Sci. Technol. 10, 255 (1995)Google Scholar
2. Wilder, K. and Quate, C. F., Appl. Phys. Lett. 73, 2527 (1998)Google Scholar
3. Magno, R. and Bennett, B. R., Appl. Phys. Lett. 70, 1855 (1997)Google Scholar
4. Mamin, H. J., Appl. Phys. Lett. 69, 433 (1996)Google Scholar
5. Hu, S., Altmeyer, S., Hamidi, A., Spangenberg, B. and Kurz, H., J. Vac. Sci. Technol. B 16, 1983 (1998)Google Scholar
6. Notargiacomo, A., Giovine, E., Cianci, E., Foglietti, V. and Evangelisti, F., in Materials Issues and Modeling for Device Nanofabrication, edited by Mehrari, L., Wille, L.T., Gonsalves, K.E., Gyure, M.F., Matsui, S., and Whitman, L.J., (Mater. Res. Soc. Proc. 584, Warrendale, PA, 2000) p. 319 Google Scholar
7. Campbell, P. M., Snow, E. S. and McMarr, P. J., J. Appl. Phys. 84, 1776 (1995)Google Scholar
8. Fontaine, P. A., Dubois, E. and Stievenard, D., Appl. Phys. Lett. 73, 2527 (1998)Google Scholar
9. Schwartz, G. C. and Platter, V., J. Electrochem. Soc. 122, 1508 (1975)Google Scholar