Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T13:59:28.397Z Has data issue: false hasContentIssue false

Study of defects and structural transformations induced by ion irradiation of Y2O3 thin films deposited by Ion Beam Sputtering

Published online by Cambridge University Press:  20 February 2017

Bertrand Lacroix
Affiliation:
Laboratoire de Physique des Matériaux (PHYMAT) – Université de Poitiers – CNRS, SP2MI, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, FRANCE
Fabien Paumier
Affiliation:
Laboratoire de Physique des Matériaux (PHYMAT) – Université de Poitiers – CNRS, SP2MI, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, FRANCE
Michael Jublot
Affiliation:
CEA LETI MINATEC, 17 rue des Martyrs 38054 Grenoble cedex 9, FRANCE
Jérôme Pacaud
Affiliation:
Laboratoire de Physique des Matériaux (PHYMAT) – Université de Poitiers – CNRS, SP2MI, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, FRANCE
Rolly J. Gaboriaud
Affiliation:
Laboratoire de Physique des Matériaux (PHYMAT) – Université de Poitiers – CNRS, SP2MI, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, FRANCE
Get access

Abstract

Y2O3 thin films deposited by Ion Beam Sputtering (IBS) deposition technique exhibit a particular disordered microstructure. In order to obtain a better knowledge on phase transition mechanisms occurring during irradiation, thin films with different microstructures have been implanted with xenon ions at different energies and different doses. This work established two types of transition (cubic-amorphous or cubic-monoclinic) depending mainly on the ion energy with a possibility to control the damaging kinetic via the pre-existing oxygen disorder.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zinkevich, M., Prog. Mater Sci., Volume 52, Issue 4, (2007), 597647 Google Scholar
2. Adachi, G., Imanaka, N., Chem. Rev. (1998), 98, 14791514 Google Scholar
3. Qin, X, Yokomori, T and Ju, Y, Appl. Phys. Lett. 90, 073104 (2007)Google Scholar
4. Dimoulas, A., Vellianitis, G.. Travlos, A., Ioannou-Soulgkeridis, V., Nassiopoulou, A. G., J. Appl. Phys. 92 (1) (2002) 426 Google Scholar
5. Lian, J., Chen, J., Wang, L. M., Ewing, R. C., Farmer, J. M., Boatner, L. A., Helean, K. B., Phys. Rev. B 68, 134107 (2003)Google Scholar
6. Tang, M., Valdez, J. A., Lu, P., Gosnell, G. E., Wetteland, C. J., Sickafus, K. E., Nuclear, J.. Matter. 328 (2004) 71 Google Scholar
7. Gaboriaud, R. J., Paumier, F., Pailloux, F., Guerin, P., Mater. Sc. And Eng. B 109 (2004) 3438 Google Scholar
8. Paumier, F., Gaboriaud, R. J., Kaul, A. R., Cryst. Engi. 5 (2002) 169175 Google Scholar
9. Hyde, B. G., Acta. Cryst. A27, (1971) 617 Google Scholar
10. Hemon, S., Berthelot, A., Dufour, Ch., Gourbilleau, F., Dooryhée, E., Bégin-collin, S., Paumier, E., Eur. Phys. J. B19 (2001) 517523 Google Scholar
11. Wang, S. X., wang, L. M., Ewing, R. C., Phys. Rev. B 63, 024105 (2000)Google Scholar
12. Lian, J., Weber, W. J., Jiang, W., Wang, L. M., Boatner, L. A.. Ewing, R. C., Nucl. Instrum. and Meth. in Phys. Res. B, 250 (2006) 128136 Google Scholar
13. Jollet, F., Noguera, C., Gautier, M., Thromat, N., Duraud, J.P., J. Am. Ceram. Soc. 74 358364 (1991)Google Scholar
14. Baldinozzi, G., Simeone, D., Gosset, D., Monnet, I., Le Caër, S., Mazerolles, L., Phys. Rev. B 74, 132107 (2006)Google Scholar
15. Jublot, M., Paumier, F., Pailloux, F., Lacroix, B., Leau, E., Guerin, P., Marteau, M., Jaouen, M., Gaboriaud, R. G., Imhoff, D., thin solid Films 515 (2007) 63856390 Google Scholar