Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T10:41:58.945Z Has data issue: false hasContentIssue false

Study of Amorphous to Microcrystalline Silicon Transition from Argon Diluted Silane

Published online by Cambridge University Press:  01 February 2011

N. Dutta Gupta
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India
P. P. Ray
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India
P. Chaudhuri
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India
U. K. Das
Affiliation:
MV Systems Inc. Golden, CO, USA 80401
S. Vignoli
Affiliation:
Departement de Physique des Materiaux, Universite Claude Bernard Lyon 1, Cedex, France>
C. Jardin
Affiliation:
Departement de Physique des Materiaux, Universite Claude Bernard Lyon 1, Cedex, France>
Get access

Abstract

We have studied the structural evolution in amorphous and microcrystalline silicon deposited from silane-argon mixture by radio frequency plasma enhanced chemical vapour deposition (PECVD) method. Sharp increase in small angle x-ray scattering (SAXS) intensity, in accordance with tilt measurements, indicates columnar morphology in the sample deposited in the amorphous-microcrystalline transition region. The variation of SAXS measured heterogeneity and a gradual shift of Si-H stretching vibrational frequency at 2000 cm-1 towards higher wave number with increase of power density indicate structural modifications in the films. Observation of sharp increase in the ratio of the intensity of Ar* to SiH* in the transition region may explain the surface modification assisted by Ar* and hence the structural changes in the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Veprek, S., Chimia 34, 489 (1981).Google Scholar
2. Tsai, C.C., Anderson, G.B., Thompson, R., Wacker, B., J. Non-Cryst. Solids. 114, 151 (1989).Google Scholar
3. Matsuda, A., Thin Solid Films 337, 1 (1999).Google Scholar
4. Shimizu, I., Hanna, J., Shirai, H., Mat.Res.Soc.Symp.Proc. 164, 195 (1990).Google Scholar
5. Fujiwara, H., Kondo, M., Matsuda, A., Mat.Res.Soc.Symp.Proc. 664, A1.2 (2001).Google Scholar
6. Usui, S., Kikuchi, M., J. Non-Cryst. Solids. 34, 1 (1979).Google Scholar
7. Hata, N., Yamasaki, S., Oheda, H., Matsuda, A., Okushi, H., Tanaka, K., Jpn. J. Appl. Phys. 20, L793 (1981).Google Scholar
8. Das, U.K, Chaudhuri, P., Khirsagar, S.T., J.Appl.Phys. 80, 5389 (1996).Google Scholar
9 Das, U. K., Chaudhuri, P., Chem Phys.Lett. 298, 211 (1998).Google Scholar
10 Beyer, W., Semiconductors and Semimetals,:ed Nickel, N.H., 61 (Academic Press, San Diego, 1999) pp165.Google Scholar
11. Knights, J. C., Lujan, R.A., Appl.Phys.Lett 35, 244 (1979).Google Scholar
12. Kroll, U., Meier, J., Shah, A., Mikhailov, S., Weber, J., J. Appl. Phys. 80, 4971 (1996).Google Scholar
13. Lucovsky, G., Solid State Comm. 29, 571 (1979).10.1016/0038-1098(79)90666-5Google Scholar
14. Sanderson, R.T., Chemical Periodicity, Reinhold, New York (1960).Google Scholar
15. Sidhu, L.S., Zukotynski, S. J. Non-Cryst. Solids 246, 65 (1999).Google Scholar
16. Jackson, W.B., Tsai, C.C., Phys. Rev. B 45, 6564 (1991).Google Scholar
17. Keudell, A. von and Abelson, J.R., J. Appl.Phys. 84, 489 (1998).Google Scholar