Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T09:33:26.728Z Has data issue: false hasContentIssue false

Studies on Crystal Structure and Magnetic Scaling Behavior of Perovskite-Like (La1−xPbx)MnO3 System with x = 0 - 0.5

Published online by Cambridge University Press:  21 March 2011

Ting-Sheng Huang
Affiliation:
Department of Physics, Chung Cheng University, 160 San-Hsing, Ming-Hsiung, Chia-Yi 621, Taiwan, R. O. C.
Chiung-Hsiung Chen
Affiliation:
Department of Physics, Chung Cheng University, 160 San-Hsing, Ming-Hsiung, Chia-Yi 621, Taiwan, R. O. C.
Ming-Fong Tai
Affiliation:
Department of Physics, Chung Cheng University, 160 San-Hsing, Ming-Hsiung, Chia-Yi 621, Taiwan, R. O. C.
Get access

Abstract

The magnetic critical behaviors in the perovskite-like (La1−xPbx)MnO3 series with x = 0.0 ∼ 0.5 are studied by means of dc magnetic measurements. All the samples crystallize in the rhombohedral unit cell with a C R 3 space group (a 0.54 nm and c 1.33 nm). The detailed crystallographic parameters of all the samples are obtained by the refinements of the powder x-ray diffraction data using the Rietveld method. The substitution effect of Pb2+ ions on La3+ sites induces a mixed-valence state of Mn3+/Mn4+ and enhances magnetic transition temperature in the (La1−xPbx)MnO3 system. The transition temperature TC increases with the Pb content from 225 K as x = 0 to 355 K as x = 0.5. The canonical spin-glass behaviors in low fields and the scaling behaviors of magnetic physical quantities are clearly observed in all our samples. The values of the related critical exponents and the scaling functions of magnetic data are close to those of the conventional spin glass systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Coey, J. M. D., Viret, M. and Molná, S. von, Advances in Physics 48, 167 (1999).10.1080/000187399243455Google Scholar
2. Frontera, C., García-Muñoz, J. L., Llobet, A., Respaud, M., Broto, J. B., Lord, J. S. and Planes, A., Phys. Rev. B62, 3381 (2000).10.1103/PhysRevB.62.3381Google Scholar
3. Searle, C. W. and Wang, S. T., Can. J. Phys. 47, 2703 (1969); 48, 2023 (1970).10.1139/p69-329Google Scholar
4. Morrish, A. H., Evans, B. J., Eaton, J. A. and Leung, L. K., Can. J. Phys. 47, 2691 (1969).Google Scholar
5. Leung, L. K., Morrish, A. H. and Searle, C. W., Can. J. Phys. 47, 2697 (1969).10.1139/p69-328Google Scholar
6. Chou, F. C., Belk, N. R., Kastner, M. A., and Birgeneau, R. J. and Aharony, A., Phys. Rev. Lett. 75, 2204 (1995); B. Barbara, A. P. Malozemoff and Y. Imry, Phy. Rev. Lett. 47, 1852 (1981).Google Scholar
7. Malozemoff, A. P., Barnes, S. E. and Barbara, B., Phy. Rev. Lett. 51, 1704 (1983).Google Scholar
8. Moutis, N., Panagiotopoulos, I., Pissas, M., and Niarchos, D., Phys. Rev. B59, 1129 (1999).10.1103/PhysRevB.59.1129Google Scholar