Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T15:02:15.754Z Has data issue: false hasContentIssue false

Structure of Momolayers of Silicotungstate Anions on Ag(111) and Au(111) Electrode Surfaces

Published online by Cambridge University Press:  10 February 2011

Maohui Ge
Affiliation:
Department of Chemistry, Frederick Seitz Materials Research Laboratory, and Beekman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Brian K. Niece
Affiliation:
Department of Chemistry, Frederick Seitz Materials Research Laboratory, and Beekman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Craig G. Wall
Affiliation:
Department of Chemistry, Frederick Seitz Materials Research Laboratory, and Beekman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Walter G. Klemperer*
Affiliation:
Department of Chemistry, Frederick Seitz Materials Research Laboratory, and Beekman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Andrew A. Gewirth*
Affiliation:
Department of Chemistry, Frederick Seitz Materials Research Laboratory, and Beekman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
*
* Authors to whom correspondence should be addressed.
* Authors to whom correspondence should be addressed.
Get access

Abstract

α-Dodecatungstosilicate (α-SiW12O404−) anions form ordered monolayers on Ag(111) and Au(111) surfaces. In-situ STM images reveal that the silicotungstate ion forms a square adlattice with an intermolecule spacing of 10.2 ± 0.5 Å on both Ag and Au surfaces. Additional structures exhibiting either row or rhombic motifs are observed on Au electrodes. The structure of the adlattices can be modeled using a simple model which maximizes the coordination of the silicotungstate ion to the electrode while maintaining van der Waals contacts between terminal oxygens of adjacent silicotungstates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gao, X. and Weaver, M. J., J. Am. Chem. Soc. 114, 8544 (1992).Google Scholar
[2] Ocko, B. M., Watson, G. M., G. M., , and Wang, J., J. Phys. Chem. 98, 897 (1994).Google Scholar
[3] McCarley, R. L. and Bard, A. J., J. Phys. Chem. 98, 9618 (1994).Google Scholar
[4] Yamada, T., Batina, N., and Itaya, K., J. Phys. Chem. 99, 8817 (1995).Google Scholar
[5] Yamada, T., Batina, N., and Itaya, K., Surf. Sci. 335, 204 (1995).Google Scholar
[6] Batina, N., Yamada, T., and Itaya, K., Langmuir 11, 4568 (1995).Google Scholar
[7] Tao, N. J. and Lindsay, S. M., J. Phys. Chem. 96, 5213 (1992).Google Scholar
[8] Ocko, B. M., Magnnussen, O. M., Adzie, R. R., Wang, J., Shi, Z., and Lipkowski, J., J. Electroanal. Chem. 376, 35 (1994).Google Scholar
[9] Magnussen, O. M., Ocko, B. M., Adzic, R. R., and Wang, J. X., Phys. Rev. B 51, 55105513 (1995).Google Scholar
[10] Soriaga, M. P., Schimpf, J. A., Carrasquillo, A., Abreu, J. B., Temesghen, W., Barriga, R. J., Jeng, J. J., Sashikata, K., and Itaya, K., Surf. Sci. 335, 273 (1995).Google Scholar
[11] Tanaka, S., Yau, S., and Itaya, K., J. Electroanal. Chem. 396, 125 (1995).Google Scholar
[12] Sneddon, D. D. and Gewirth, A. A., Surf. Sci. 343, 185 (1995).Google Scholar
[13] Magnussen, O. M., Hageböck, J., Hotlos, J., and Behm, R. J., Far. Disc. 94, 329 (1992).Google Scholar
[14] Edens, G. J., Gao, X., and Weaver, M. J., J. Electroanal Chem. 375, 357 (1994).Google Scholar
[15] Funtikov, A. M., Linke, U., Stimming, U., and Vogel, R., Surf. Sci. 324, L343 (1995).Google Scholar
[16] Wan, L., Yau, S., and Itaya, K., J. Phys. Chem. 99, 9507 (1995).Google Scholar
[17] Stuhlmann, C., Villegas, I., and Weaver, M. J., Chem. Phys. Lett. 219, 319324 (1994).Google Scholar
[18] Sawaguchi, T., Yamada, T., Okinaka, Y., and Itaya, K., J. Phys. Chem. 99, 14149 (1995).Google Scholar
[19] Pope, M. T. and Müller, A., Angew. Chem. Int. Ed. Engl. 30, 34 (1991).Google Scholar
[20] Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-Verlag: Berlin, 1983; pp. 101165.Google Scholar
[21] Rong, C. and Anson, F. C., Anal. Chem. 66, 31243130 (1994).Google Scholar
[22] Keita, B., Nadjo, L., Belanger, D., Wilde, C. P., and Hilaire, M., J. Electroanal. Chem. 384, 155(1995).Google Scholar
[23] Nadjo, L. and Keita, B., Journal de Physique IV 4, 329 (1994).Google Scholar
[24] Keita, B., Chaveau, F., Theobald, F., Belanger, D., and Nadjo, L., Surf. Sci. 264, 271 (1992).Google Scholar
[25] Watson, B., Barteau, M. A., Haggerty, L., and Lenhoff, A. M., Langmuir 8, 1145 (1992).Google Scholar
[26] Zhang, B. and Wang, E., Electroanal. Chem. 388, 207 (1992).Google Scholar
[27] Kaba, M. S., Song, I. K., and Barteau, M. A., J. Phys. Chem. 100, 19577 (1996).Google Scholar
[28] Song, I. K., Kaba, M. S., Coulston, G., Kourtakis, K., and Barteau, M. A., Chem. Materials. 8, 2352(1996).Google Scholar
[29] Song, I. K., Kaba, M. S., and Barteau, M. A., J. Phys. Chem., 100, 17528 (1996).Google Scholar
[30] Ge, M., Zhong, B., Klemperer, W. G., and Gewirth, A. A., J. Am. Chem. Soc. 118, 5812 (1996).Google Scholar
[31] Will, T. and Kolb, D. M. in Nanoscale Probes of the Solid-Liquid Interface, Gewirth, A. A. and Siegenthaler, H., Eds. Kluwer: Dordrecht NATO-ASI V.l. E288, p. 137, (1995).Google Scholar
[32] Obretenov, W., et. al. J. Electrochem. Soc. 140, 692 (1993).Google Scholar
[33] Tézé, A. and Hervé, G., Inorg. Syn. 27, 93 (1990).Google Scholar