Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-27T10:48:57.426Z Has data issue: false hasContentIssue false

Structure of Amorphous A12O3 Produced by Ion Implantation

Published online by Cambridge University Press:  25 February 2011

C. J. Mchargue
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6118 USA
P. S. Sklad
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6118 USA
P. Angelini
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6118 USA
C. W. White
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6118 USA
J. C. Mccallum
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6118 USA
A. Perez
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6118 USA
G. Marest
Affiliation:
Univeristy Claude Bernard-Lyon 1, Villeurbanne, France
Get access

Abstract

The amorphous state can be produced in α-Al2O3 by ion beam induced displacements at 77 K or by displacements combined with chemical effects at room temperature. Progress toward understanding the amorphization process has been made from studies of the short-range order, electronic charge on implanted species, and the critical composition for amorphization. Results are presented for implantation of Al + O in the stoichiometric ratio, zirconium, iron, and tin.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Farlow, G. C., Sklad, P. S., White, C. W., McHargue, C. J., and Appleton, B. R., in Defect Properties and Processing of High Technology Nonmetallic Materials, edited by Chen, Y., Kingerly, W. D., and Stokes, R. J. (Mater. Res. Soc. Proc. 60, Pittsburgh, PA 1986) pp. 387394.Google Scholar
2 McHargue, C. J., Farlow, G. C., White, C. W., Williams, J. M., Appleton, B. R., and Naramoto, H., Mater. Sci. Engr. 69, 123 (1985).Google Scholar
3 Sklad, P. S., Angelini, P., and Sevely, J., in Proceedings of 46th Annual Meeting of the Electron Microscopy Soc. of America, edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1988) pp. 468–9.Google Scholar
4 McHargue, C. J., Sklad, P. S., McCallum, J. C., White, C. W., Perez, A., and Marest, G., to be published in Nucl. Instrum. Methods in Phys. Res. B.Google Scholar
5 J. McHargue, C., Sklad, P. S., McCallum, J. C., White, C. W., Perez, A., Abonneau, E., and Marest, G., to be published in Nucl. Instrum. Methods in Phys. Res. B.Google Scholar
6 Greenwood, N. and Gibb, T. C., in Mössbauer Spectroscopy (Chapman and Hall, London, 1971) p. 249.Google Scholar
7 McHargue, C. J., Farlow, G. C., Sklad, P. S., White, C. W., Perez, A., Kornilios, N., and Marest, G., Nucl. Instrum. Methods in Phys. Res. B19/20, 813 (1987).Google Scholar
8 Rossiter, M. J., J. Phys. Chem. Sol. 26, 775 (1965).Google Scholar
9 Demazeau, G., Buffat, B., Pouchard, M., and Hagenmuller, P., J. Sol. State Chem. 54, 389 (1984).Google Scholar
10 Collins, C. S., Kachnowski, T., Benczer-Koller, N., and Pasternak, M., Phys. Rev. B19, 1369 (1979).Google Scholar