Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T01:54:26.196Z Has data issue: false hasContentIssue false

Structure and Growth of N2O Gate Oxynitrides

Published online by Cambridge University Press:  15 February 2011

K. A. Ellis
Affiliation:
School of Applied and Engineering Physics Cornell University Ithaca, NY 14853-2501
E. C. Carr
Affiliation:
School of Applied and Engineering Physics Cornell University Ithaca, NY 14853-2501
R. A. Buhrman
Affiliation:
School of Applied and Engineering Physics Cornell University Ithaca, NY 14853-2501
Get access

Abstract

A series of investigations have been conducted into the properties of N2O silicon oxynitride gate dielectrics, and the various methods of their growth. One of the principle advantages of these oxides is their resistance to interface state generation. This is linked to the presense of nitrogen near the substrate interface, where it is triply bonded to silicon. It is also demonstrated that during N2O-based furnace growth, the total concentration of NOx species varies strongly with the flow rate of N2O. This has been correlated to the temperature profile of the furnace, which can be affected by the exothermic decomposition of N2O. This property has been exploited to controllably adjust the rate of nitrogen incorporation by up to a factor of three. Although nitrogen incorporation during furnace processing is generally stable, it is shown that atomic oxygen is capable of removing previously incorporated nitrogen. Sources of atomic oxygen include the decomposition of N2O during RTP treatment, N2O processing in a high flow rate furnace, or from ozone annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ting, W., Hwang, H., Lee, J., and Kwong, D. L., Appl. Phys. Lett 57, 2808 (1990).Google Scholar
2. Aoyama, T., Suzuki, K., Tashiro, H., Toda, Y., Yamazaki, T., Arimoto, Y., and Ito, T, J. Electrochem. Soc. 140, 3624 (1993).Google Scholar
3. Tobin, P. J., Okada, Y., Ajuria, S. A., Lakhotia, V., Feil, W. A., and Hedge, R. I., J. Appl. Phys. 75, 1811 (1994).Google Scholar
4. Ellis, K. A. and Buhrman, R. A., Appl. Phys. Lett., 68, 1696 (1996).Google Scholar
5. Carr, E. C. and Buhrman, R. A., Appl. Phys. Lett., 63, 54 (1994).Google Scholar
6. Hwang, H., Ting, W., Maiti, B., Kwong, D.-L., and Lee, J., Appl. Phys. Lett. 57, 1010 (1990).Google Scholar
7. Fukuda, H., Arakawa, T., and Ohno, S., Jpn. J. Appl. Phys. 29, 2333 (1990).Google Scholar
8. Ahn, J., Ting, W., Chu, T., Lin, S. N., and Kwong, D. L., J. Electrochem. Soc., 138, L39 (1991).Google Scholar
9. Hussey, R. J., Hoffman, T. L., Tao, Y., and Graham, M. J., J. Electrochem. Soc., 143, 221 (1996).Google Scholar
10. Hedge, R. I., Tobin, P. J., Reid, K. G., Maiti, B., and Ajuria, S. A., Appl. Phys. Lett., 66, 2882 (1995).Google Scholar
11. Okada, Y., Tobin, P. J., Lakhotia, V., Feil, W. A., Ajuria, S. A., and Hedge, R. I., Appl. Phys. Lett., 63, 194 (1993).Google Scholar
12. Lu, Z. H., Tay, S. P., Cao, R., and Pianetta, P., Appl. Phys. Lett., 67, 2836 (1995).Google Scholar
13. Raider, S. I., Flitsch, R., Aboaf, J. A., and Pliskin, W. A., J. Electrochem. Soc., 123, 560 (1976).Google Scholar
14. Browning, R., Sobolewski, M. A., and Helms, C. R., Phys. Rev. B 38, 13407 (1988).Google Scholar
15. Yount, J. T., Lenahan, P. M., and Wyatt, P. W., J. Appl. Phys. 77, 699 (1995).Google Scholar
16. Kaufman, F., Gerri, N. J., and Bowman, R. E., J. Chem. Phys. 25, 106 (1956).Google Scholar
17. Jones, K., Comprehensive Inorganic Chemistry (Pergamon, Oxford, 1973), Vol. 2, pp. 350.Google Scholar
18. Briner, E., Meiner, Ch., and Rothen, A., J. Chim. Phys. 23, 609 (1926).Google Scholar
19. Musgrave, F. F. and Hinshelwood, C. N., Proc. Roy. Soc. A 168, 23 (1932).Google Scholar
20. Yao, Z.-Q., Harrison, H. B., Dimitrijev, S., Sweatman, D., and Yeow, Y. T., Appl. Phys. Lett. 64, 3584 (1994).Google Scholar
21. Green, M. L., Brasen, D., Feldman, L. C., Lennard, W., and Tang, H.-T., Appl. Phys. Lett. 67, 1600 (1995).Google Scholar
22. Ma, Z.-J., Liu, Z. H., Krick, J. T., Huang, H. J., Cheng, Y. C., Hu, C., Ko, P. K., IEEE Trans. Electron Dev., 41, 1364 (1994).Google Scholar
23. Hao, M.-Y., Chen, W.-M., Lai, K., Lee, J. C., Gardner, M., and Fulford, J., Appl. Phys. Lett., 66, 1126 (1995).Google Scholar
24. Saks, N. S., Ma, D. I., and Fowler, W. B., Appl. Phys. Lett. 67, 374 (1995).Google Scholar
25. Lange, P., Bernt, H., Hartmannsgruber, E., and Naumann, F., J. Electrochem. Soc., 141, 259 (1994).Google Scholar
26. Chao, T. S., Chen, W. H., Sun, S. C., and Chang, H. Y., J. Electrochem Soc. 140, L160 (1993).Google Scholar
27. Rosser, W. A. and Wise, H., J. Chem. Phys. 24, 493 (1956).Google Scholar
28. Hinshelwood, C. N. and Lindars, F. J., Proc. Roy. Soc. A 231, 162 (1955).Google Scholar
29. Jones, K., Comprehensive Inorganic Chemistry (Pergamon, Oxford, 1973), Vol. 2, pp. 354.Google Scholar
30. Carr, E. C., Ellis, K. A., and Buhrman, R. A., Appl. Phys. Lett. 66, 1492 (1995).Google Scholar