Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T12:43:21.259Z Has data issue: false hasContentIssue false

Structural Trends in Amorphous Carbon

Published online by Cambridge University Press:  10 February 2011

C. Z. Wang
Affiliation:
Ames Laboratory and Department of Physics, Iowa State University, Ames, IA 50011
K. M. Ho
Affiliation:
Ames Laboratory and Department of Physics, Iowa State University, Ames, IA 50011
Get access

Abstract

Amorphous carbon (a-C) structures over a wide range of densities are generated by tight-binding molecular dynamics simulations using the recently developed environment-dependent carbon tight-binding potential. Our simulation results show that the relative concentration of the sp2 and sp3 bondings in the a-C samples changes systematically with the density of the samples. The a-C networks obtained by quenching the low density liquids consist of mostly three-fold coordinated atoms while the diamond-like tetrahedral a-C can be generated by quenching the high density (about 3.0g/cm3) liquid carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review, see Robertson, J., Adv. Phys. 35, 317(1986), and inGoogle Scholar
Diamond and Diamond-like Films and Coatings, edited by Clausing, R. et al., NATO Advanced Study Institutes Ser. B Vol. 266, p. 331 (Plenum, New York, 1991).Google Scholar
2. Li, F. and Lannin, J. S., Phys. Rev. Lett. 65, 1905(1990).Google Scholar
3. McKenzie, D. R., Muller, D., and Pailthorpe, B. A., Phys. Rev. Lett. 67, 773(1991).Google Scholar
4. Gaskell, P. H., Saeed, A., Chieux, P., and McKenzie, D. R., Phys. Rev. Lett. 67, 1286(1991).Google Scholar
5. Gilkes, K. W. R., Gaskell, P. H., and Robertson, J., Phys. Rev. B 51, 12303 (1995).Google Scholar
6. Berger, S. D., McKenzie, D. R., and Martin, P. J., Phil. Mag. Lett. 57, 285 (1988).Google Scholar
7. Beeman, D., Silverman, J., Lynds, R., and Anderson, M. R., Phys. Rev. B 30, 870 (1984).Google Scholar
8. Galli, G., Martin, R. M., Car, R., and Parrinello, M., Phys. Rev. Lett. 62, 555(1989); Phys. Rev. B 42, 7470(1990).Google Scholar
9. Tersoff, J., Phys. Rev. Lett. 61, 2879(1988).Google Scholar
10. Tersoff, J., Phys. Rev. B 44, 12039(1991).Google Scholar
11. Wang, C. Z., Ho, K. M. and Chan, C. T., Phys. Rev. Lett. 70, 611 (1993).Google Scholar
12. Wang, C. Z. and Ho, K. M., Phys. Rev. Lett. 71, 1184 (1993).Google Scholar
13. Kaukonen, H.-P. and Nieminen, R. M., Phys. Rev. Lett. 68, 620(1992).Google Scholar
14. Kelires, P. C., Phys. Rev. Lett. 68, 1854(1992).Google Scholar
15. Blaudeck, P., Frauenheim, Th, Porezag, D., Seifert, G. and Fromm, E., J. Phys: Condens. Matter 4, 6389 (1992).Google Scholar
16. Frauenheim, Th., Blaudeck, P., Stephan, U., and Jungnickei, G., Phys. Rev. B 48, 4823 (1993).Google Scholar
17. Dradold, D. A., Fedders, P. A., and Grumbach, M. P., Phys. Rev. B 54, 9703 (1996).Google Scholar
18. Marks, N. A., McKenzie, D. R., and Pailthorpe, B. A., Bernasconi, M. and Parrinello, M., Phys. Rev. Lett. 76, 768 (1996).Google Scholar
19. Tang, M. S., Wang, C. Z., Chan, C. T., and Ho, K. M., Phys. Rev. B 53, 979 (1996).Google Scholar
20. Andersen, H. C., J. Chem. Phys. 72, 2384(1980).Google Scholar
21. Franzblau, D. S., Phys. Rev. B 44, 4925 (1991).Google Scholar