Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-18T15:40:01.378Z Has data issue: false hasContentIssue false

Structural Studies of Metal-Semiconductor Interfaces with High-Resolution Electron Microscopy

Published online by Cambridge University Press:  15 February 2011

J. M. Gibson
Affiliation:
Bell Laboratories, 600 Mountain Avenue, Murray Hill NJ 07974
R. T. Tung
Affiliation:
Bell Laboratories, 600 Mountain Avenue, Murray Hill NJ 07974
J. M. Poate
Affiliation:
Bell Laboratories, 600 Mountain Avenue, Murray Hill NJ 07974
Get access

Abstract

We have studied interface atomic structure in epitaxial cobalt and nickel disilicides on silicon using high-resolution transmission electron microscopy. By employing UHV techniques during deposition and reaction we have grown truly single-crystalline NiSi2 and CoSi2 films on (111) Si and in the former case on (100) Si. These films are shown to be continuous to below 10Å thickness. By close control over preparation conditions, afforded by UHV, we can greatly influence the nucleation and growth of these films to the extent, for example with NiSi2 on (111)Si, of yielding continuous single-crystal films with either of two orientations as desired. Whilst in the (111) NiSi2 on Si system the interfacial structure invariably appears to well-fit a model in which metal atoms nearest to the interface are 7-fold co-ordinated, for (111) CoSi2 on Si agreement is generally better with a model involving 5-fold co-ordination of these atoms. A misfit dislocation core is also imaged. Results are discussed in the light of silicide nucleation and growth. The structure and stability of the (100) NiSi2 on Si interface is also considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sheng, T.T. and Marcus, R.B., J. Electrochem. Soc. 127, 737 (1980).CrossRefGoogle Scholar
2. Chiu, K.C.R., Poate, J.M., Rowe, J.E., Sheng, T.T. and Cullis, AG., Appl. Phys. Lett. 38, 988 (1981).CrossRefGoogle Scholar
3. Foil, H., Ho, P. S. and Tu, K. N., J. Appl. Phys. 52, 250 (1981)CrossRefGoogle Scholar
4. Cherns, D., Smith, D.A., Krakow, W. and Batson, P. E., Phil. Mag. A45, 107 (1982).CrossRefGoogle Scholar
5. Cherns, D., Spence, J. C. H., Anstis, G. R. and Hutchison, J. L., Phil. Mag., in press (1982).Google Scholar
6. Gibson, J. M., Bean, J. C., Poate, J. M. and Tung, R. T., Appl. Phys. Lett., Nov. (1982).Google Scholar
7. Schluter, M., Thin Sol. Films 93,3 (1982).CrossRefGoogle Scholar
8. Tu, K. N., Alessandrini, E. I., Chu, W. K., Krautle, H. and Mayer, J. W., Jpn. J. Appl. Phys., suppl. 2, part 1, 669 (1974).CrossRefGoogle Scholar
9. Ishiwara, H., Nagatumo, M. and Furukawa, S., Nucl. Inst. Meth. 149, 417 (1978).CrossRefGoogle Scholar
10. Gibson, J. M., Bean, J. C., Poate, I. M. and Tung, R. T., Inst. Phys. Conf. Ser. 60 415 (1981).Google Scholar
11. Tung, R. T., Poate, J. M., Bean, J. C., Gibson, J. M. and Jacobson, D. C., Thin Sol. Films 93, 77 (1982).CrossRefGoogle Scholar
12. Gibson, J. M., Bean, J. C., Poate, J. M. and Tung, R. T., Thin Sol. Films, 99 (1982).Google Scholar
13. Chen, L.J., Mayer, J.W., Tu, K.N. and Sheng, T.T., Thin Sol. Films 93, 91 and, 135 (1982).CrossRefGoogle Scholar
14. Tung, R. T., Bean, J. C., Gibson, J. M., Poate, J. M. and Jacobson, D. C., Appl. Phys. Lett., 40, 684 (1982).CrossRefGoogle Scholar
15. Tung, R. T., Gibson, J. M. and Poate, J. M., this volumeGoogle Scholar
16. Tung, R. T., Gibson, J. M. and Poate, J. M., to be publishedGoogle Scholar
17. for a good review see : Experimental High-Resolution Electron Microscopy, Spence, J. C. H., Clarendon Press (Oxford 1981).CrossRefGoogle Scholar
18. Bean, J. C. and Poate, J. M., Appl. Phys. Lett. 37, 643 (1982).CrossRefGoogle Scholar
19. Handbook of Chemistry and Physics , Chemical Rubber Company, (1980).Google Scholar