Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T01:54:16.578Z Has data issue: false hasContentIssue false

Structural Relaxation of Densified Silica Glass by Thermal Annealing

Published online by Cambridge University Press:  10 February 2011

Naoyuki Kitamura
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka 563, Japan.
Kohei Fukumi
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka 563, Japan.
Masaki Makihara
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka 563, Japan.
Hiroshi Yamashita
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka 563, Japan.
Get access

Abstract

Thermal relaxation of glass structure has been studied on silica glasses densified by hot isostatic pressing. Density of the glasses relaxed toward the value of an undensified glass by thermal annealing. Relaxation rates of density of the glasses were measured after the annealing at several temperatures. Fast and slow relaxation processes were found from the analysis by using a stretched exponential relaxation function Φ(t)=exp{−(teffβ}). The slow process becomes dominant after the fast process. Raman scattering spectrum also has been measured through the thermal relaxation. The width of the main band at 450cm−1 increased by the annealing and recovered the value for the undensified glass after the fast process. The bands at 1060 and 1200 cm−1 shifted back to the positions for the undensified glass. The high density state(Δρ/ρ∼0.5%), however, was maintained even after the fast process. From these results, it is deduced that the fast process is due to the recovery of the O3Si-O-SiO3 tilt angle and Si-O-Si bond angle to the mean values for the undensified glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bridgman, P. W. and Simmon, I., J. Appl. Phys. 24, 405(1953).Google Scholar
2. Cohen, H. M. and Roy, R., J. Amer. Ceram. Soc. 44,523(1961).Google Scholar
3. Mackenzie, J. D., J. Amer. Ceram. Soc. 46,461(1963).Google Scholar
4. Ferraro, J. R., Manghnami, M. H. and Quattrochi, A., Phys. Chem. Glasses 13,116(1972).Google Scholar
5. Velde, B. and Couty, R., J. Non-Cryst. Solids 94,238(1987).Google Scholar
6. Williams, Q. and Jeanloz, R., Science 239, 902(1988).Google Scholar
7. Mochizuki, S. and Kawai, N., Solid State Commun. 11,763(1972).Google Scholar
8. Devine, R. A. B., J. Vac. Sci. Tehnol. A 6, 3154(1988).Google Scholar
9. Seifert, F. A., Mysen, B. O. and Virgo, D., Phys. Chem. Glasses 24, 141(1983).Google Scholar
10. McMillan, P., Piriou, B. and Couty, R., J. Chem. Phys. 81, 4234(1984).Google Scholar
11. Hemly, R. J., Mao, H. K., Bell, P. M. and Mysen, B. O., Phys. Rev. Lett. 57, 747(1986).Google Scholar
12. Geissberger, A. E. and Galeener, F. L., Phys. Rev. B 28, 3266(1983).Google Scholar
13. Mozzi, R. L. and Warren, B. E., J. Appl. Crystollagr. 2, 164(1969).Google Scholar
14. Jorgensen, J. D., J. Appl. Phys. 49, 5473(1978).Google Scholar
15. Susman, S., Volin, K. J., Liebermann, R. C., Gwanmesia, g. D. and Wang, Y., Phys. Chem. Glasses 31. 144(1990).Google Scholar
16. Susman, S., Volin, K. J., Price, D. L., Grimsditch, M., Rino, J. P., Kalia, R. K., Vashishta, P., Gwanmesia, G., Wang, Y. and Liebermann, R. C., Phys. Rev. B43, 1194(1991).Google Scholar
17. Devine, R. A. B. and Arndt, J., Phys. Rev. B 35, 9376(1987).Google Scholar
18. Devine, R. A. B. and Arndt, J., Phys. Rev. B 39, 5132(1989).Google Scholar
19. Devine, R. A. B., Dupree, R., Farnan, I. and Capponi, J. J., Phys. Rev. B 35, 2560(1987).Google Scholar
20. Kimmel, R. M. and Uhlmann, D. R., Phys. Chem. Glasses 10, 12(1969).Google Scholar
21. Arndt, J., Devine, R. A. B. and Revesz, A. G., J. Non-Cryst. Solids 131–133, 1206(1991).Google Scholar
22. Kitamura, N. and Yamashita, H., Hot Isostatic Pressing '93, Ed. by Delaey, L. and Tas, H., p.471, Elsevier, Amsterdam, 1994.Google Scholar
23. Hetherington, G. and Jack, K. H., Phys. Chem. Glasses 3,129(1962).Google Scholar
24. Walrafen, G.E. and Hokmabadi, M. S., Structure and Bonding in Non-Crystalline Solids, Ed. by Walrafen, G. E. and Revesz, A. G., p.185, Plenum Press, New York, 1986.Google Scholar
25. Stolen, R. H. and Walrafen, G. E., J. Chem. Phys. 64, 2623(1976).Google Scholar
26. Walrafen, G. E. and Kristnan, P. N., J. Chem. Phys. 74,5328(1981).Google Scholar
27. Sen, P. N. and Thorpe, M. F., Phys. Rev. B 15,4030(1977).Google Scholar
28. Galeener, F. L., Phys. Rev. B 19, 4292(1979); M. F. Thorpe and F. L. Galeener, J. Non-Cryst. Solids 38/39, 1197(1980).Google Scholar