Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-23T20:17:16.100Z Has data issue: false hasContentIssue false

Structural Imperfections in Ulrathin Oxides Grown on Hydrogen Terminated Silicon Surfaces

Published online by Cambridge University Press:  21 February 2011

Takeo Hattori
Affiliation:
Department of Electrical and Electronic Engineering, Musashi Institute of Technology1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158, Japan
Kazuaki Ohishi
Affiliation:
Department of Electrical and Electronic Engineering, Musashi Institute of Technology1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158, Japan
Get access

Abstract

The initial stage of oxidation of 40wt-% NH4F treated Si(111) surface at 300 °C in dry oxygen with a pressure of 133 Pa and the subsequent oxidation at 600 and 800°C were studied. It was found from the analysis of Si 2p photoelectron spectra that non-uniform layer by layer oxidation proceeds at 300°C, while the layer by layer oxidation proceeds at 600 and 800°C. Furthermore, at these temperatures the interface becomes atomically flat with the progress of oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ibach, R., Horn, K., Dorn, R. and Luth, H.: Surf. Sci. 38,433 (1973).Google Scholar
2 Ludeki, R. and Koma, A.: Phys. Rev. Lett. 34, 1170 (1975).CrossRefGoogle Scholar
3 Fujiwara, K., Ogata, H. and Nishijima, M.: Solid State Commun. 21, 895 (1977).CrossRefGoogle Scholar
4 Ibach, H., Bruchmann, H.D. and Wagner, H.: Appl. Phys. A29, 113 (1982).Google Scholar
5 Garner, C.M., Lindau, I., Su, C.Y., Pianetta, P. and Spicer, W.E.: Phys. Rev. B19, 3944 (1979).Google Scholar
6 Hollinger, G. and Himpsel, F.J.: J.Vac.Sci.Technol. Al, 640 (1983).Google Scholar
7 Yaguchi, H., Fujita, K., Fukatsu, S., Shiraki, Y.,Ito, R.,Igarashi, T. and Hattori, T.: Surf. Sci. 275,395 (1922).Google Scholar
8 Ono, Y. and Tabe, M.: Extended Abstracts of Intern. Conf. on Solid State Devices and Materials, August 1992, Tsukuba, Japan, p. 196.Google Scholar
9 Ross, F.M. and Gibson, J.M.: Phys. Rev. Lett. 68, 1782 (1992).Google Scholar
10 Taft, E.A.: J. Electrochem. Soc. 135, 1023 (1988).Google Scholar
11 Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M., and Ohwada, M.: J. Appl. Phys. 68, 1272 (1990).CrossRefGoogle Scholar
12 Yasaka, Y., Uenaga, S., Yasutake, H., Takakura, M., Miyazaki, S., and Hirose, M.: Mat. Res. Soc. Symp. Proc. 259,385 (1992).Google Scholar
13 Higashi, G.S., Becker, R.S., Chabal, Y.J., and Becker, A.J.: Appl. Phys. Lett. 58, 1656 (1991).Google Scholar
14 Nagasawa, Y., Ishida, H., Takahagi, T., and Ishitani, H.: Solid State Electronics, Supplement 33, 123 (1990).Google Scholar
15 Ohmi, T., Morita, M., Teramoto, A., Makihara, K., and Tseng, K.S.: Appl. Phys. Lett. 60, 2126 (1992).CrossRefGoogle Scholar
16 Tamura, Y., Ohishi, K., Nohira, H., and Hattori, T.: Extended Abstracts of Intern. Conf. on Solid State Devices and Materials, August 1992, Tsukuba, p. 111.Google Scholar
17 Himpsel, F.J., McFeely, F.R., Talev-Ibrahimi, A., Yarmoff, J.A., and Hollinger, G.: Phys. Rev. B38, 6084 (1988).Google Scholar
18 Gelius, U., Wannberg, B., Baltzer, P., Fellner-Feldegg, H., Carlson, G., Johansson, C.-G., Larsson, J., Munger, P., and Vergerfos, G., J. Electron. Spectrosc. Relat. Phenom. 52,747 (1990).CrossRefGoogle Scholar
19 Nohira, H., Tamura, Y., Ogawa, H., and Hattori, T.: IEICE Trans. on Electronics, E75–C, 757 (1992).Google Scholar
20 Touggard, S.: Surf. Sci. 216,343 (1989).Google Scholar
21 Hattori, T.: J. Vac. Sci. Technol. 11,1528 (1993).CrossRefGoogle Scholar