Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T00:05:07.077Z Has data issue: false hasContentIssue false

Structural Evolution of Ni/Au Contact on GaN(0001)

Published online by Cambridge University Press:  17 March 2011

Chong Cook Kim
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
Jong Kyu Kim
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
Jong-Lam Lee
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
Min-Su Yi
Affiliation:
Department of Materials Science and Engineering and Center for Electronic Materials Research, Kwangju Institute of Science and Technology, Kwangju, Korea
Jin-Woo Kim
Affiliation:
Department of Materials Science and Engineering and Center for Electronic Materials Research, Kwangju Institute of Science and Technology, Kwangju, Korea
Do Young Noh
Affiliation:
Department of Materials Science and Engineering and Center for Electronic Materials Research, Kwangju Institute of Science and Technology, Kwangju, Korea
Yeukuang Hwu
Affiliation:
Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China
Pierre Ruterana
Affiliation:
Equipe Structure et Comportement Thermomécanique des Matériaux (CRISMAT UMR 6508 CNRS), ISMRA 6, Bd Maréchal Juin, Caen Cedex F-14050, France
Jung Ho Je
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
Get access

Abstract

We investigated the structural behavior of the Ni/Au contact on GaN(000l) during annealing in N2, using in-situ x-ray diffraction, anomalous x-ray scattering, and high resolution electron microscopy. Thermally activated atomic mobility caused the two metal atoms, Au and Ni, to interdiffuse during annealing and form solid solutions. At temperature higher than 500°C, GaN decomposition and reactions occurred mostly along GaN dislocations. By decomposed nitrogen reacted with Ni, interestingly, epitaxial Ni4N phase was formed. The epitaxial relationship of the Ni4N, Au, and Ni was identified as M(111)//GaN(0002) and M[0 1 1]//GaN[0211] (M= Ni4N, Au, and Ni).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
2. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
3. Morkoc, H. and Mohammad, S. N., Science 267, 51 (1995).Google Scholar
4. Nakamura, S., Science 281, 956 (1998).Google Scholar
5. Khan, M. A., Shur, M. S., Kuznia, J. N., Chen, Q., Burm, J., and Schaff, W., Appl. Phys. Lett. 66, 1083 (1995).Google Scholar
6. Aktas, O., Fan, Z. F., Mohammad, S. N., Botchkarev, A. E., and Morkoc, H., Appl. Phys. Lett. 69, 3872 (1996).Google Scholar
7. Liu, Q. Z. and Lau, S. S., Solid-State Electron., 42, 677 (1998), and references therein.Google Scholar
8. Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phys., 86, 1 (1999), and references therein.Google Scholar
9. Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett., 62, 2390 (1993).Google Scholar
10. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Jpn. J. Appl. Phys., Part 2 36, L1059 (1997).Google Scholar
11. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Appl. Phys. Lett., 72, 2014 (1998).Google Scholar
12. Kim, J. K., Lee, J. L., Lee, J. W., Park, Y. J., and Kim, T., J. Vac. Sci. Technol. B 17, 2675 (1999).Google Scholar
13. Wu, X. H., Kapolnek, D., Tarsa, E. J., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett., 68, 1371 (1996).Google Scholar
14. Cheng, L., Zhang, Z., Zhang, G., and Yu, D., Appl. Phys. Lett., 71, 3694 (1997).Google Scholar
15. Stragier, H., Cross, J. O., Rehr, J. J., Sorensen, L. B., Bouldin, C. E., and Woicik, C. E., Phys. Rev. Lett. 69, 3064 (1992).Google Scholar
16. Mizuki, J., in X-Ray Absorption Fine Structure for Catalysts and Surfaces, edited by Iwasawa, Y. (World Scientific, Singapore, 1996), pp. 372.Google Scholar