Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T00:16:28.027Z Has data issue: false hasContentIssue false

Structural evolution and acoustic phonon behavior in crystalline PTFE latex films

Published online by Cambridge University Press:  15 February 2011

M. Pierno
Affiliation:
INFM and Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy
C.S. Casari
Affiliation:
INFM and Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy
A. Li Bassi
Affiliation:
INFM and Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy
M.G. Beghi
Affiliation:
INFM and Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy
R. Piazza
Affiliation:
INFM and Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy
C.E. Bottani
Affiliation:
INFM and Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy
Get access

Abstract

The structural evolution of polytetrafluoroethylene (PTFE) crystalline polymer latex films is studied at hundreds nanometer length scale by atomic force microscopy and Brillouin light scattering. In a controlled sintering process the transition is observed from the original particle distribution towards a ‘fibrillar’ structure of crystalline regions embedded in a disordered matrix. This transition is accompanied by a cross-over from localized acoustic excitations to propagating acoustic phonons, related to mesoscopic elastic properties. After sintering, a ‘mark’ of the original particulate structure persists, suggesting that filming of crystalline polymers may be analogous to sintering of ceramic powders. Films of crystalline polymers can thus be exploited as model systems to study the elasto-optical properties of granular and disordered media.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Steward, P. A., Hearn, J., and Wilkinson, M. C., Adv. Coll. Interface Sci. 86, 195 (2000).Google Scholar
2. Sprik, M., Rothlisberger, U., and Klein, M. L., Mol. Physics 76, 355 (1999).Google Scholar
3. Schwodiauer, R., Neugschwandtner, G. S., Bauer-Gogonea, S., Bauer, S., and , Rosenmayer, Appl. Phys. Lett. 76, 3310 (2000).Google Scholar
4. David, L., Sachot, C., Guenin, G., and Perez, J., J. Phys. (Paris) IV 6, C8 421 (1996).Google Scholar
5. Degiorgio, V., Piazza, R., Bellini, T., and Visca, M., Adv. Coll. Interface Sci. 48, 61 (1994).Google Scholar
6. Bottani, C. E., Bassi, A. Li, Stella, A., Cheyssac, P., and Kofman, R., Europhys. Lett. 56, 1386 (2001).Google Scholar
7. Korsunsky, A. M., Encyclopedia of Materials: Science and Technology (Elsevier Science, New York, 2001), vol. 3, pp. 24002406.Google Scholar
8. Dresselhaus, M. and Dresselhaus, G., in Light Scattering in Solids III, ed. Cardona, M. and Günterhodt, G. (Springer-Verlag, New York, 1982), Topics in Applied Physics, pp. 3138 Google Scholar
9. Nizzoli, F. and Sandercock, J. R., in Dynamical Properties of Solids, ed. Horton, G. and Maradudin, A. (North Holland, Amsterdam, 1990) pp 281, 293.Google Scholar
10. Ring, T. A., Fundamentals of Ceramics Powder Processing and Synthesis (Academic, San Diego, 1996).Google Scholar