Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T18:54:59.443Z Has data issue: false hasContentIssue false

A Structural Comparison of Si(100) Oxidized by Atomic and Molecular Oxygen

Published online by Cambridge University Press:  11 February 2011

Maja Randjelovic
Affiliation:
Materials Science and Engineering Department, 848 Benedum Hall, University of Pittsburgh, Pittsburgh PA 15213, USA
Judith C. Yang
Affiliation:
Materials Science and Engineering Department, 848 Benedum Hall, University of Pittsburgh, Pittsburgh PA 15213, USA
Get access

Abstract

We compared the structural characteristics of a silica layer formed on Si(100) by oxidation in hyperthermal atomic oxygen and molecular oxygen at 493K. The laser detonation method was used to create primarily neutral atomic oxygen with kinetic energy of 5.1eV. The silicon oxides were characterized by High Resolution Transmission Electron Microscopy (HRTEM), Atomic Force Microscopy (AFM), Rutherford Backscattering Spectrometry (RBS), Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). We determined that atomic oxygen forms amorphous silica that is almost twice as thick and nearly double the surface roughness as compared to molecular oxygen - formed silica at the same temperature and time conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Minton, T. and Garton, D. Dynamics of atomic-oxygen–induced polymer degradation in low earth orbit. Chemical dynamics in extreme environments. Advanced series I physical chemistry. ed. Dressler, R. A. World Scientific. Singapore (2000)Google Scholar
2. Banks, B. Rutledge, S. de Groh, K. and Auer, B. NATO advanced study institute conference Pitlochry, Scotland, July 7–19 (1991)Google Scholar
3. Tagawa, M. Yokota, K. Ohmae, N. and Kinoshita, H. High Perform Polym. 12, 5363 (2000)Google Scholar
4. Caledonia, G.E. Krech, R.H. and Green, B.D. AIAA J. 25, 5963 (1987).Google Scholar
5. Oakes, D.B. Krech, R.H. Upschuete, B.L. and Caledonia, G.E. J. Appl. Phys. 77, 21662172 (1995)Google Scholar
6. Eaglsham, D. Higashi, G. and Cerullo, M. Appl. Phys. Lett. 59(6) 685687 (1991)Google Scholar
7. Nakazawa, M. Nishioka, Y. Sekiyama, H. and Kawaze, S. J. Appl. Phys. 65(10) 40194023 (1989)Google Scholar
8. Thompson, P. Twigg, M. Goodbey, D. Hobart, K. and Simons, D. J. Vac. Sci. Technol. B 11(3) 10771082 (1993)Google Scholar
9. Higashi, G. Becker, R. Chabel, Y. and Becker, A. Appl. Phys. Lett. 58(15) 16561658 (1991)Google Scholar
10. Trucks, G. Raghavachari, K. Higashi, G. and Chabal, Y. Phys. Rev. Lett: 65 (4) 504507 (1990)Google Scholar
11. Engstrom, J.R. Nelson, M.M. Engel, T. J. Vac. Sci. Technol. A7(3) 18371840 (1989)Google Scholar
12. Engstrom, J.R Engel, T Phys. Rev. B 41(2) 10381042 (1990)Google Scholar
13. Ichimura, S. Kurokawa, A. Nakamura, K. Itoh, H. Nonaka, H. Koike, K. Thin Solid Films 377–378. 518524 (2000)Google Scholar
14. Itoh, H. Nakamura, K. Kurokawa, A. Ichimura, S. Surface Science 482–485. 114120 (2001)Google Scholar