Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T06:58:07.258Z Has data issue: false hasContentIssue false

Structural Characterization of the Thermal Evolution of Tetrahedrally Coordinated Amorphous Carbon Films

Published online by Cambridge University Press:  10 February 2011

L. J. Martinez-Miranda
Affiliation:
Dept. of Materials and Nuclear Eng., University of Maryland, College Park, MD 20742–2115, martinez@eng.umd.edu
J. P. Sullivan
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
T. A. Friedmann
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
N. J. DiNardo
Affiliation:
Dept. of Physics and Atmospheric Sciences, Drexel University, Philadelphia, PA 19104; Dept. of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104.
Get access

Abstract

We present the results of a post-deposition annealing structural study on amorphous tetrahedrally-coordinated carbon (a-tC) films on Si(100) prepared by pulsed-laser deposition. Films as-deposited and post-annealed at 200, 300, 400, 500 and 600 °C, respectively, are studied using combined x-ray reflectivity and low-angle scattering measurements. The scans are fit to the Fresnel equations to obtain values for average film density, film and interface thickness, and film and interface roughness. We observe a correlation between the evolution of film density, roughness and the spacing of quasi-periodic structures in the films as a function of annealing temperature. We relate the evolution of these structural features with previous measurements of the resistivity and the observed stress release in these films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sullivan, J. P., Friedmann, T. A., Tallant, D. R., Mikkalson, J., Rieger, D. J., Baca, A. G. and Martínez-Miranda, L. J., Appl. Phys. Lett., in press, 1997;Google Scholar
Sullivan, J. P., Friedmann, T. A., and Baca, A. G., J. of Elee. Mats., 26, 1026 (1997).Google Scholar
2. Huai, Y. et al, Appl. phys. Lett., 65, 830 (1994).Google Scholar
3. Martínez-Miranda, L. J., Sullivan, J. P., Friedmann, T. A., Siegal, M. P., Mercer, T. W. and DiNardo, N. J., Mat. Res. Soc. Symp. Proc, 383, 459 (1995).Google Scholar
4. Siegal, M. P., Martínez-Miranda, L. J. et al., in progress (1998).Google Scholar
5. Siegal, M. P., Friedmann, T. A., Kurtz, S. R., Tallant, D. R., Simpson, R. L., Dominguez, F. and McCarty, K. F., Mat. Res. Soc. Symp. Proc., 349, 507 (1994).Google Scholar
6. Shi, Yushan, unpublished;Google Scholar
see also, Toney, M. F. and Brennan, S., J. Appl. Phys., 66, 1861 (1989);Google Scholar
Lucas, C. A. et al., Appl. phys. Lett., 59, 2100 (1991).Google Scholar
7. Mercer, T. W. et al, Mat. Res. Symp. Proc., 358, 863 (1995).Google Scholar
8. Sullivan, J. P. and Newcomer-Provencio, P. P., unpublished.Google Scholar