Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T20:14:46.359Z Has data issue: false hasContentIssue false

Structural and Photoluminescence Studies of Ni-doped ZnO Nanoparticles Synthesized by Solution Combustion Method

Published online by Cambridge University Press:  19 February 2014

Murugesan SILAMBARASAN*
Affiliation:
Centre for Photonics and Nanotechnology, Sona College of Technology, Salem – 636 005, Tamil Nadu, INDIA
Shanmugam SARAVANAN
Affiliation:
Centre for Photonics and Nanotechnology, Sona College of Technology, Salem – 636 005, Tamil Nadu, INDIA
Naoki OHTANI
Affiliation:
Department of Electronics, Doshisha University, Kyoto-610 032, JAPAN
Tetsuo SOGA
Affiliation:
Department of Frontier Materials, Nagoya Institute of Technology, Nagoya-466-8555, JAPAN
Get access

Abstract

In this paper, the authors have reported the structural and photoluminescence (PL) studies of pure and nickel (Ni) doped zinc oxide (ZnO) nanoparticles synthesized by the solution combustion method. The structural, morphological and optical studies are carried out by powder x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and PL spectra, respectively. The XRD pattern indicates that the prepared particles are in hexagonal wurtzite structure with the average crystalline size is around 35-50nm. Room temperature PL shows the near band edge related emission and the results are related several intrinsic defects in the ZnO nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S. J. and Morkoc, H.,J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
Cole, J. J., Wang, X., Knuesel, R. J. and Jacobs, H. O., Nano Lett. 8, 1477–81(2008).CrossRefGoogle Scholar
Wang, Z. L., Appl. Phys. A 88, 715 (2007).CrossRefGoogle Scholar
Cong, C. J., Liao, L., Li, J. C., Fan, L. X. and Zhang, K. L., Nanotechnology 16, 981–84 (2005).CrossRefGoogle Scholar
Wang, R., Xin, J. H., Yang, Y., Liu, H., Xu, L. and Hu, J., Appl. Surf. Sci. 227, 312–17 (2004).CrossRefGoogle Scholar
Wang, Y. S., Thomas, P. John, and O'Brien, P., J. Phys. Chem. B 110, 21412–15 (2006).CrossRefGoogle Scholar
Ni, Y., Cao, X., Wu, G., Hu, G., Yang, Z. and Wei, X., Nanotechnology 18, 1556 (2007).Google Scholar
Xia, C., Hu, C., Tian, Y., Wan, B., Xu, J. and He, X., Physica E 42, 20862090 (2010).CrossRefGoogle Scholar
Huang, G. J., Wang, J. B., Zhong, X. L., Zhou, G. C. and Yan, H. L., J Mater Sci 42, 64646468 (2007).CrossRefGoogle Scholar
Surca, A., Orel, B., Pihlar, B. and Bukovec, P., J. Electroanal. Chem. 408, 83 (1996).CrossRefGoogle Scholar
Mahamuni, S., Borgohain, K. and Bendre, B. S., J. Appl. Phys. 85, 2861–65 (1999).CrossRefGoogle Scholar
Borseth, T. M., Svensson, B. G., Kuznetsov, A. Y., Klason, P., Zhao, Q. X. and Willander, M., Appl. Phys. Lett. 89, 262112 (2006).CrossRefGoogle Scholar
Yang, R. D., Tripathy, S., Li, Y. and Sue, H. J., Chem. Phys. Lett. 411, 150–54 (2005).CrossRefGoogle Scholar
Fan, X. M., Lian, J. S., GuO, Z. X. and Lu, H. J., Appl. Surf. Sci. 239, 176–81 (2005).CrossRefGoogle Scholar