Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-12T19:46:15.022Z Has data issue: false hasContentIssue false

Structural and Chemical Properties of MBE Grown Niobium Overlayers on (110) Rutile

Published online by Cambridge University Press:  10 February 2011

J. Marien
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D-70174 Stuttgart, GERMANY
T. Wagner
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D-70174 Stuttgart, GERMANY
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D-70174 Stuttgart, GERMANY
Get access

Abstract

Thin Nb films were grown by MBE in a UHV chamber at two different temperatures (50°C and 950°C) on the (110) surface of TiO2 (rutile).

At a growth temperature of 50°C, reflection high energy electron diffraction (RHEED) revealed epitaxial growth of Nb on rutile: (110)[001] TiO2 ¦¦ (100)[001] Nb. In addition, investigations with Auger electron spectroscopy (AES) revealed that a chemical reaction took place between the Nb overlayer and the TiO2 substrate at the initial growth stage. A 2 nm thick reaction layer at the Nb/TiO2 interface has been identified by means of conventional transmission electron microscopy (CTEM) and high-resolution transmission electron microscopy (HRTEM).

At a substrate temperature of 950°C, during growth, the Nb film was oxidized completely, and NbO2 grew epitaxially on TiO2. The structure and the chemical composition of the overlayers have been investigated by RHEED, AES, CTEM and HRTEM. Furthermore, it was determined that the reaction of Nb with TiO2 is governed by the defect structure of the TiO2 and the relative oxygen affinities of Nb and TiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haller, G.L. and Resaco, D.E., Advan. Catal. 36, 173 (1989).Google Scholar
2. Schierbaum, K.D., Wei-Xing, X., Fischer, S. and Göpel, W. in Adsorption on Ordered Surfaces of Ionic Solids an Thin Films edited by Umbach, E. and Freund, H.J. (Springer, Berlin, 1993), p. 268.Google Scholar
3. Fujishima, A. and Honda, K., Nature 238, 37 (1972).Google Scholar
4. Pan, J.-M., Maschhoff, B.L., Diebold, U. and Madey, T.E., J.Vac.Sci.Technol. A 10, 2470 (1992).Google Scholar
5. Diebold, U., Pan, J.-M. and Madey, T. E., Surface Science 331–333, 845 (1995)Google Scholar
6. Henrich, V.E., Mat. Res. Soc. Symp. Proc.Vol.357, 67 (1995).Google Scholar
7. Xie, L., Wang, D., Zhong, C., Guo, X., Ushikubo, T. and Wada, K., Surf.Sci. 320, 62 (1994).Google Scholar
8. Marien, J., Wagner, T. and Rühle, M., to be publishedGoogle Scholar
9. Anderson, S., Collen, B., Kuylenstierna, U. and Magntli, A., Acta chem. scand. 11, 1641 (1957).Google Scholar
10. Zhang, Z. and Henrich, V., Surf. Sci. 277, 263 (1992).Google Scholar
11. Sambi, M., Pin, E., Sangiovanni, G., Zaratin, L., Grazano, G. and Parmigiani, F., Surf. Sci. Lett. 349, L169 (1996)Google Scholar
12. Rheed, T. B., Free Energy of Formation of Binary Compounds, (MIT Press Cambridge, Massachusetts, 1971)Google Scholar