Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-30T02:09:50.333Z Has data issue: false hasContentIssue false

Stress of Platinum Thin Films Deposited by Dc Magnetron Sputtering Using Argon/Oxygen Gas Mixture

Published online by Cambridge University Press:  10 February 2011

Min Hong Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Tae-Soon Park
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Dong-Su Lee
Affiliation:
Advanced Materials Area, Tong Yang Central Laboratories, Kyungki 449-910, Korea
Yong Eui Lee
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Dong-Yeon Park
Affiliation:
Advanced Materials Area, Tong Yang Central Laboratories, Kyungki 449-910, Korea
Hyun-Jung Woo
Affiliation:
Advanced Materials Area, Tong Yang Central Laboratories, Kyungki 449-910, Korea
Dong-Il Chun
Affiliation:
Advanced Materials Area, Tong Yang Central Laboratories, Kyungki 449-910, Korea
Euijoon Yoon
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Jowoong Ha
Affiliation:
Advanced Materials Area, Tong Yang Central Laboratories, Kyungki 449-910, Korea
Get access

Abstract

Pt thin films were deposited by a DC magnetron sputtering with Ar/O2 gas mixtures. Due to the oxygen incorporation into the Pt films, deposition rate and resistivity of as-deposited Pt thin films increased with oxygen fraction in the sputtering gas. No peaks from crystalline Pt oxides were observed by x-ray diffraction (XRD) and excessive oxygen incorporation into Pt lead to an amorphous Pt oxide formation. More oxygen could be incorporated in the Pt thin films deposited at lower temperatures and at higher total pressures. Incorporated oxygen was completely removed after an annealing at 800 °C for an hour in air ambient, as the resistivity of the Pt thin films recovered their bulk resistivity values. Tensile stress of the Pt films decreased with oxygen incorporation, and approached a saturation level at high resistivity of the films, presumably due to the formation of amorphous Pt oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Moazzami, R., Semicond. Sci. Technol. 10, 375 (1995).Google Scholar
2. Hwang, C. S., Park, S. O., Kang, C. S., Cho, H.-J., Kang, H.-K., Ahn, S. T. and Lee, M. Y., Jpn. J. Appl. Phys. 34, 5178 (1995).Google Scholar
3. Al-Shareef, H. N., Bellur, K. R., Auciello, O. and Kingon, A. I., Ferroelectrics 152, 85 (1994).Google Scholar
4. AI-Shareef, H. N., Gifford, K. D., Rou, S. H., Hren, P. D., Auciello, O. and Kingon, A. I., Integrated Ferroelectrics 3, 321 (1993).Google Scholar
5. McBride, J. R., Graham, G. W., Peters, C. R. and Weber, W. H., J. Appl. Phys. 69, 1596 (1991).Google Scholar
6. Hecq, M., Hecq, A. and Liemans, M., J. Appl. Phys. 49, 6176 (1978).Google Scholar
7. Buhdani, R. C., Prakash, S., Doerr, H. J. and Bunshah, R. F., J. Vac. Sci. Technol. A 4, 3023 (1986).Google Scholar
8. Hecq, M. and Hecq, A., J. Vac. Sci. Technol. 18, 219 (1981).Google Scholar
9. Ohring, M., The Materials Science of Thin Films, (Academic Press Inc., San Diego, 1992) pp. 403438 Google Scholar
10. Gittis, A. and Dobrev, D., Thin Solid Films 130, 335 (1985)Google Scholar
11. Stoney, G. G., Proc. R. Soc. London, Ser. A 82, 172 (1909).Google Scholar
12. Thornton, J. A., J. Vac. Sci. Technol. A4, 3059 (1986)Google Scholar
13. Bennewitz, C. D., Westwood, W. D., Brown, J. D., J. Appl. Phys. 46, 558 (1975).Google Scholar
14. Hammond, C. R. in CRC Handbook of Chemistry and Physics, edited by Lide, D. R., CRC Press, 19901991, pp. 487 ∼ 4–88.Google Scholar
15. Lee, D.-S., Park, D.-Y., Kim, M. H., Chun, D.-I., Ha, J., and Yoon, E., 1996 Fall Meeting of Materials Research Society, Boston, Dec. 2–6.Google Scholar
16. Neff, N., Henkel, S., Hartmannsgruber, E., Steinbeiss, E., Michalke, W., Steenbeck, K., Schmidt, H. G., J. Appl. Phys. 79, 7672 (1996).Google Scholar
17. Alexander, P. M. and Hoffman, R.W., J. Vac. Sci. Technol. 13, 96 (1976).Google Scholar
18. Machlin, E. S., Materials Science in Microelectronics (Giro Press, New York, 1995) pp. 157 ∼ 171.Google Scholar