Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T22:16:23.877Z Has data issue: false hasContentIssue false

Stress, Microstructure, and Thermal Behavior in Mo/Si X-Ray Multilayers

Published online by Cambridge University Press:  15 February 2011

Tai D. Nguyen
Affiliation:
currently at the National Center for Electron Microscopy, Lawrence Berkeley Laboratory.
James H. Underwood
Affiliation:
Center for X-Ray Optics, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.
Get access

Abstract

The relationship between intrinsic stress and microstructural evolution in nanometer Mo/Si multilayers deposited by magnetron sputtering at low working pressure (2.5 mTorr) is studied. The stress depends strongly on the microstructure which evolves with the multilayer period. In-situ thermal stress measurements show stress relaxation is observed in Mo/Si multilayers after annealing at 300°C in nitrogen ambient, due to microstructural changes in the multilayers. Average stress exhibits changes after annealing at 500°C which correspond to increased interdiffusion between the layer materials and crystallization at the interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nguyen, T.D., Khan-Malek, C., and Underwood, J.H., to be published.Google Scholar
2. Thornton, J.A., Tabock, J., and Hoffman, D.W., Thin Solid Films 64 (1979) 111.Google Scholar
3. Hoffman, D.W. and Thornton, J.A., J. Vac. Sci. Tech. 20, 3 (1982) 355.Google Scholar
4. Thornton, J.A., J. Vac. Sci. Tech. A4, 6 (1986) 3059.Google Scholar
5. Itoh, M., Hori, M., and Nadahara, S., J. Vac. Sci. Tech. B9, 1 (1991) 149.Google Scholar
6. Vink, T.J., Somers, M.A.J., Daams, J.L.C., and Dirks, A.G., J. Appl. Phys. 70, 8 (1991) 4301.Google Scholar
7. Nguyen, T.D., Lu, X., and Underwood, J.H., in Physics of X-Ray Multilayer Structures OSA Tech. Digest Series 6, 1994) 102.Google Scholar
8. Nguyen, T.D., in: Polycrystalline Thin Films: Microstructure, Texture, and Properties (MRS Proc. 343, 1994) 579.Google Scholar
9. Windt, D.L., Kola, R.R., Waskiewicz, W.K., Hull, R., Friffith, J., and Grigg, D.A., in: Physics of X-Ray Multilayer Structures (OSA Tech. Digest Series 7, 1992) 12.Google Scholar
10. Holloway, K., Do, K.B., and Sinclair, R., J. Appl. Phys. 65 (1989) 474.Google Scholar
11. Steams, D.G., Steams, M.B., Cheng, Y., Stith, J.H., and Ceglio, N.M., J. Appl. Phys. 67 (1990) 2415.Google Scholar
12. Nguyen, T.D., Gronsky, R., and Kortright, J.B., J. Elec. Microsc. Tech. 19 (1991) 473.Google Scholar
13. Pan, J.T. and Blech, I., J. Appl. Phys. 55 (1984) 2874.Google Scholar
14. Stoney, G.G., Proc. Roy. Soc. Lon. A82 (1909) 72.Google Scholar
8. Brenner, A. and Sendroff, S., J. Res. Natl. Bur. Stand. 42 (1949) 105.Google Scholar
9. Davidenkov, N.N., Soy. Phys.-Solid State 2 (1961) 2595.Google Scholar
10. Timoshenko, S., J. Opt. Soc. Am. 11 (1925) 23.Google Scholar
11. Hoffman, R.W., Phys. Thin Films 3 (1966) 211.Google Scholar
12. Vilms, J. and Kerps, D., J. Appl. Phys. 53 (1982) 1536.Google Scholar
13. Townsend, P.H., Barnett, D.M., and Brunner, T.A., J. Appl. Phys. 62 (1987) 4438.Google Scholar
14. Ruud, J.A., Witvrouw, A., and Spaepen, F., in Defects in Materials (MRS Proc. 209, 1991) 737.Google Scholar
15. Bain, J.A., Chyung, L.J., Brennan, S., and Clemens, B.M., Phys. Rev. B 44, 3 (1991) 1184.Google Scholar
16. Ruud, J.A., Witvrouw, A., and Spaepen, F., J. Appl. Phys. 74, 49(1993) 2517.Google Scholar
17. Ruud, J. A., Witvrouw, A., and Spaepen, F., MRS Proc. 209 (1991).Google Scholar
18. Kola, R.R., Windt, D.L., Waskiewicz, W.K., Weir, B.E., Hull, R., Celler, G.K., and Volkert, C.A., Appl. Phys. Lett. 60 (1992) 3120.Google Scholar