Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T07:43:14.223Z Has data issue: false hasContentIssue false

Stress Induced Extended Ranges for Hydration and Other Phenomena in Ion Implanted Silica Glasses

Published online by Cambridge University Press:  03 September 2012

G. W. Arnold
Affiliation:
Consultants International, 11729 South Highway 14, Tijeras, NM, USA
G. Battaglin
Affiliation:
Università di Venezia, INFM, Departimento di Chimica Fisica, Calle Larga S. Marta 2137, 30123 Venezia, Italy
Get access

Abstract

The extended ranges (2–3 times theoretical) for hydration from an ambient atmosphere or water immersion and other anomalous ranges for property changes in ion-implanted fused silica are explained on the basis of a stress corrosion model (Michalske-Bunker). The results for the hydration of implanted soda-lime glass are similar to fused silica with the added feature of compositional modification due to the near-surface removal of alkali.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arnold, G.W., Nucl. Instr. and Methods B 32 (1988) 268.Google Scholar
2. Arnold, G.W., Battaglin, G. and Mazzoldi, P, Mater. Res. Soc. Symp. Proc. 316 (1994) 111.Google Scholar
3. Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.Google Scholar
4. Arnold, G.W., De Marchi, G., Mazzoldi, P. and Battaglin, G., Nucl. Instr. and Methods B 116 (1996) 364.Google Scholar
5. Arnold, G.W., Battaglin, G., Boscolo-Boscoletto, A., Caccavale, F., De Marchi, G., Mazzoldi, P. and Miotello, A., Nucl. Instr. and Methods B 65 (1992) 387.Google Scholar
6. EerNisse, E.P., J. Appl. Phys. 45 (1974) 167.Google Scholar
7. Presby, H.M. and Brown, W.L., Appl. Phys. Lett. 24 (1974) 511.Google Scholar
8. Arnold, G.W., Nucl. Instr. and Methods B 32 (1988) 504.Google Scholar
9. Arnold, G.W., Radiat. Eff. 98 (1986) 55.Google Scholar
10. Mea, G. Della, Dran, J.-C., Petit, J.-C., Bezzon, G. and Rossi-Alvarez, C., Nucl. Instr. And Methods 218 (1983) 493.Google Scholar
11. Mea, G. Della, Rossi-Alvarez, C., Mazzi, G., Bezzon, G., Chaumont, J., Dran, J.-C., Mendenhall, M. and Petit, J.-C., Nucl. Instr. and Methods B 19/20 (1987) 943.Google Scholar
12. Burman, C. and Lanford, W.A., J. Appl. Phys. (1983) 2312.Google Scholar
13. Battaglin, G., Mea, G., De Marchi Della, G., Mazzoldi, P. and Miotello, A., Nucl. Instr. And Methods B 1 (1984)511.Google Scholar
14. Mazzoldi, P., Nucl. Instr. and Methods 209/210 (1983) 1089.Google Scholar
15. Arnold, G.W., Nucl. Instr. and Methods B 1 (1984) 516.Google Scholar
16. Volkert, C.A. and Polman, A., Mater. Res. Symp. Proc. 235 (1992) 3.Google Scholar
17. Devine, R.A.B., Nucl. Instr. and Methods B 91 (1994) 378.Google Scholar
18. Brinker, C.J., Tallant, D.R., Roth, E.P. and Ashley, C.S., Mater. Res. Soc. Symp. Proc. 61 (1986) 387.Google Scholar
19. Michalske, T.A. and Bunker, B.C., J. Appl. Phys. 56 (1984) 2686.Google Scholar
20. Pantano, C.G. in Strength of Inorganic Glass, edited by Kurkjian, C.R., Plenum, New York, 1985, p. 37.Google Scholar
21. Battaglin, G., Mea, G., De Marchi Della, G., Mazzoldi, P. and Miotello, A., Nucl. Instr. And Methods B 7/8 (1985) 517.Google Scholar
22. Camera, A., Mazzoldi, P., Boscolo-Boscoletto, A., Caccavale, F., Bertoncello, R., Granozzi, G., Spagnol, I. and Battaglin, G., J. Non-Cryst. Solids 125 (1990) 293.Google Scholar
23. Arnold, G.W. and Doyle, B.L., Nucl. Instr. and Methods 194 (1982) 491.Google Scholar