Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T11:34:16.015Z Has data issue: false hasContentIssue false

Strengthening at High Temperatures in an Iron-Aluminium Alloy by the Precipitation of Stable and Coherent Intermetallic Particles

Published online by Cambridge University Press:  26 February 2011

David G. Morris
Affiliation:
david.morris@cenim.csic.es, CENIM, CSIC, Physical Metallurgy, Avenida Gregorio del Amo 8, Madrid, N/A, Spain, 34-91-553-8900, 34-91-534-7425
Maria A. Muñoz-Morris
Affiliation:
mmunoz@cenim.csic.es, CENIM, CSIC, Physical Metallurgy, Avenida Gregorio del Amo 8, Madrid, E-28040, Spain
Luis M. Requejo
Affiliation:
lm@cenim.csic.es, CENIM, CSIC, Physical Metallurgy, Avenida Gregorio del Amo 8, Madrid, E-28040, Spain
Get access

Abstract

Despite decades of intensive research iron aluminides remain characterised by relatively poor ductility at room temperature and low strength at high temperatures, especially under slow strain rate or creep conditions. A variety of strengthening particles has been tested for improving high temperature strength, but each has serious limitations: typical carbide precipitates are unable to resist dissolution or coarsening at high temperatures; as-solidified iron aluminides with sufficient amounts of transition elements such as Nb or Mo show heavy solidification segregation and are embrittled by a network of Laves phase; mechanical milling with stable oxides appears an excessively expensive processing route. A new iron-aluminium alloy has been developed with Zr and Cr additions that forms fine coherent precipitates even after extended annealing at temperatures as high as 900ºC. These precipitates have a complex Fe3Zr structure and form in a cube-on-cube orientation relationship in the bcc matrix. The low solubility and diffusivity of the solute, as well as the low energy, near-coherent interface ensures excellent stability of these intermetallic precipitates. Interesting strengthening is possible for this material under the relevant high temperature creep conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McKamey, C.G., Physical metallurgy and processing of intermetallics compounds, eds. Stoloff, N.S. and Sikka, V.K. (Chapman and Hall, 1996) pp351391.10.1007/978-1-4613-1215-4_9Google Scholar
2. McKamey, C.G., Maziasz, P.J. and Jones, J.W., J. Mater. Res. 6, 1779 (1991).10.1557/JMR.1991.1779Google Scholar
3. McKamey, C.G., Maziasz, P.J: and Jones, J.W., J. Mater. Res. 7, 2089 (1992).10.1557/JMR.1992.2089Google Scholar
4. Morris, D.G., Muñoz-Morris, M.A. and Baudin, C., Acta Mater. 52, 2827 (2004).10.1016/j.actamat.2004.02.031Google Scholar
5. Zhang, W.J., Sundar, R.S. and Deevi, S.C., Intermetallics 12, 893 (2004).10.1016/j.intermet.2004.02.020Google Scholar
6. Kratochvil, P., Pesicka, J., Halk, J., Balzac, T. and Hanus, P.J., J. Alloy Compd. 378, 238 (2004).10.1016/j.jallcom.2003.11.163Google Scholar
7. Morris, M.A. and Morris, D.G., Acta Metall. Mater. 38, 551 (1990).10.1016/0956-7151(90)90209-YGoogle Scholar
8. Morris, D.G. and Gunther, S., Mater. Sci. Eng. A7, 208 (1996).Google Scholar
9. Morris-Muñoz, M.A., Intermetallics 7, 653 (1999).10.1016/S0966-9795(98)00079-XGoogle Scholar
10. Wasilkowska, A., Bartsch, M., Stein, F., Palm, M., Sztwiertnia, K. and Sauthoff, G., Mater. Sci. Eng. A380, 9 (2004).10.1016/j.msea.2004.04.005Google Scholar
11. Wasilkowska, A., Bartsch, M., Stein, F., Palm, M., Sauthoff, G. and Messerschmidt, U., Mater. Sci. Eng. A381, 1 (2004).10.1016/j.msea.2004.04.039Google Scholar
12. Schneider, A., Falat, L., Sauthoff, G. and Frommeyer, G., Intermetallics 11, 443 (2003).10.1016/S0966-9795(03)00018-9Google Scholar
13. Eumann, E., Palm, M. and Sauthoff, G., Intermetallics 12, 625 (2004).10.1016/j.intermet.2004.03.013Google Scholar
14. Palm, M. and Sauthoff, G., Intermetallics 12, 1345 (2004).10.1016/j.intermet.2004.03.017Google Scholar
15. Falat, L., Schneider, A., Sauthoff, G. and Frommeyer, G., Intermetallics 13, 1256 (2005).10.1016/j.intermet.2004.05.010Google Scholar
16. Stein, F., Palm, M. and Sauthoff, G., Intermetallics 13, 1275 (2005).10.1016/j.intermet.2004.08.013Google Scholar
17. Risanti, D.D. and Sauthoff, G., Intermetallics 13, 1313 (2005).10.1016/j.intermet.2004.12.029Google Scholar
18. Morris, D.G., Muñoz-Morris, M.A. and Requejo, L.M., Acta Mater. 54, 2335 (2006).10.1016/j.actamat.2006.01.008Google Scholar
19. Kratochvil, P., Halk, J., Vlasak, T. and Hanus, P., Proc. Int. Conf. on High Temperature Creep (Institute of Materials, London, 2005).Google Scholar
20. Alloy Phase Diagrams, Vol. 3, ASM Handbook, Materials Park, Ohio (1992).Google Scholar
21. Stein, F., Sauthoff, G. and Palm, M., Z. Metallkd. 95, 469 (2004).10.3139/146.017985Google Scholar
22. Morris, D.G., Requejo, L.M. and Muñoz-Morris, M.A., Intermetallics 13, 862 (2005).10.1016/j.intermet.2005.01.008Google Scholar
23. Morris, D.G., Requejo, L.M. and Muñoz-Morris, M.A., Scripta Materialia 54, 393 (2006).10.1016/j.scriptamat.2005.10.022Google Scholar
24. Morris, D.G., Muñoz-Morris, M.A., Requejo, L.M. and Baudin, C., Intermetallics 14, 1204 (2006).10.1016/j.intermet.2005.10.015Google Scholar
25. Cieslar, M. and Karlik, M., Mater. Sci. Eng., in press (2006).Google Scholar
26. Kratochvil, P., Malik, P., Cieslar, M., Hanus, P., Hakle, J. and Vlasak, T., Intermetallics, in press (2006).Google Scholar